Пособие генетика. Минеева Лариса Юрьевна заведующий кафедрой общей биологии и ботаники гоу впо ивГУ, доцент, кандидат педагогических наук Данное учебное пособие
Скачать 1.1 Mb.
|
ТЕМА № 2 Методы изучения генетики человека Генетические исследования и диагностика отклонений в развитии человека основываются на комплексном применении различных методов клинической генетики. Выделяют следующие методы: клинико-генеалогический, близнецовый, цитогенетический, иммуногенетический, биохимический, популяционно-генетический, молекулярно-генетический. При таком подходе объектами исследования являются: семьи, близнецы, хромосомы, факторы иммунитета, ферменты, молекула ДНК, популяция. Клинико-генеалогический метод Метод предложен Ф. Гальтоном в 1865 г. Задачами метода являются: установление наследственного характера болезни, определение типа ее наследования, изучение сцепления болезни с различными генетическими маркерами, сравнение частоты заболевания среди родственников с аналогичным показателем в общей популяции. В настоящее время картировано более 1500 генетических маркеров и сцепленных с ними генов. С помощью анализа сцепления генов диагностируются миодистрофия Дюшенна, гемофилия, миотопическая дистрофия. Анализ сцепления может быть использован для пренатальной диагностики болезней, доклинической диагностики, т.е. до появления симптомов, и диагностики гетерозиготных состояний. Генеалогический метод (метод родословных) заключается в прослеживании патологического признака или самой болезни в семье с указанием типа родственных связей между членами родословной. В клинической генетике метод чаще называют клинико-генеалогическим, поскольку речь идет об изучении патологического признака с помощью приемов клинического обследования. Методика составления родословной Сбор и анализ родословной — важный этап в обследовании больного, дающий возможность установить наследственный характер заболевания и тип его наследования. Сбор родословной начинается с пробанда — больного ребенка, попавшего на прием к врачу. Выясняются некоторые общие вопросы, касающиеся пробанда, его сибсов и других родственников: фамилия, имя, отчество, дата рождения, национальность, место рождения, наличие кровнородственных браков в родословной между любыми членами семьи. Важно знать, какие заболевания встречаются в родословной, а не только выявлять больных с одинаковыми патологическими признаками. Необходимо уточнить наличие выкидышей, мертворождений и ранней гибели детей у родственников любой степени родства, т.к. эти состояния часто обусловлены действием патологических генов. Вопросы о состоянии здоровья всех членов семьи необходимо задавать по единой схеме, постоянно повторяя их, чтобы опрашиваемый мог вспомнить детали заболевания у родственников. Желательно при сборе генеалогических данных использовать семейный альбом фотографий. Схематическое изображение родословной начинается также с пробанда — того человека, который был когда-то обследован первым по поводу проблем развития. Он помечается стрелкой. После пробанда собираются сведения о его детях, если это взрослый, а затем о сибсах пробанда с учетом последовательности беременностей у матери и их исходах. Если пробанд — ребенок, то после сведений о нем собираются сведения о его сибсах. Следующий этап в сборе родословной — сбор сведений обо всех кровных родственниках по материнской линии. Сначала выясняется все о матери пробанда, ее сибсах и их детях. Затем записываются данные о бабке по линии матери, ее сибсах. Если возможно, собираются сведения о прабабке и прадеде пробанда. Далее собираются сведения о деде пробанда по линии матери, его сибсах, их детях и внуках. Только после окончательного сбора сведений о родственниках по материнской линии можно переходить к отцу и его родственникам. Принцип сбора сведений аналогичен предыдущему. Родственники отца изображаются в левой половине родословной, и следует обратить внимание на правильное обозначение линий пересечения. Если родословная очень обширная, то все поколения изображаются не горизонтальными рядами, как в большинстве случаев, а располагаются по окружности. Если в родословной прослеживаются несколько признаков (симптомов), то для обозначения каждого из них используются нестандартные символы. К родословной прилагается пояснительная записка — легенда, включающая список нестандартных обозначений. Каждое поколение изображается на одной линии и обозначается римскими цифрами сверху вниз. Каждый член поколения, включая супругов, обозначается арабской цифрой (нумерация слева направо для каждого поколения с единицы). Построение генеалогического дерева представляет собой важнейший этап медико-генетического консультирования. Необходимо собрать как можно больше клинико-психологических данных, а в некоторых случаях произвести дополнительные медицинские и психологические обследования. Все эти данные позволяют как можно точнее установить фенотип обследуемого и его родственников. Сбор генеалогических данных завершается объективным обследованием больного. Клинико-психологическое обследование Клинико-психологическое и генетическое обследования проводятся в тесном взаимодействии и включают несколько основных этапов.
Клинико-генетическая диагностика Клинико-генетическая диагностика включает следующие этапы.
После диагностики можно приступать к тестированию определенных генетических моделей — либо классических, менделевских, либо более сложных, полигенных. Близнецовый метод Общая частота рождения двойни близнецов составляет около 1% (1 : 100); тройни — 1 : 10 000; четверни — 1:1 000 000; пятерни — 1 : 100 000 000. Близнецовый метод предложен в 1876 г. Ф. Гальтоном для разграничения роли наследственности и среды в фенотипическом разнообразии различных признаков у человека. Данный метод позволяет установить роль генотипических факторов в формировании нормальных и патологических признаков, а также оценить вклад таких паратипических факторов, как воспитание и обучение в формировании психологических характеристик, включая интеллект и личностные характеристики. Предварительными этапами близнецового исследования являются сбор близнецового материала и диагностика зиготности. Затем следуют экспериментальное изучение близнецов и статистическая обработка данных. При исследовании больших близнецовых выборок для диагностики зиготности и оценки соотношения в ней близнецов различного типа применяют метод анкетирования. Сбор близнецового материала Общепринятая схема подбора близнецовых пар состоит в следующем: из популяции выбираются индивиды, обладающие интересующим исследователя признаком, а затем из отобранной группы выбираются близнецовые пары, подлежащие изучению. При изучении психофизических характеристик или особенностей личности исследователь имеет дело с признаками, свойственными всем членам популяции. В таких случаях важен безвыборочный учет близнецовых пар. В противном случае полученные результаты не могут быть экстраполированы на общую популяцию. Тестом на безотборность составленной близнецовой выборки является проверка соотношения в ней монозиготных (МЗ) и дизиготных (ДЗ) близнецов. МЗ-близнецы в европейских странах составляют примерно 35% от всех случаев. Чтобы убедиться в этом, необходимо число разнополых близнецов удвоить (так как общее число ДЗ-близнецов включает равное число разно-и однополых партнеров), затем от общего числа близнецовых пар в выборке отнять найденное число ДЗ-близнецов. Методы диагностики зиготности в изучении близнецов При диагностике зиготности изучаемых близнецовых пар достоверность диагноза должна быть не менее 0,99. Предложены различные методы диагностики зиготности близнецов: метод «сходства-подобия» (полисимптомный), по эритроцитарным и лейкоцитарным маркерам, трансплантация кожного лоскута и другие, обычно использующиеся в комплексе для достижения большей достоверности. Однако наиболее эффективным методом является ДНК-диагностика. При использовании близнецового метода в зависимости от целей и задач проводятся следующие сопоставления:
Монозиготные близнецы (МЗ) развиваются из одной яйцеклетки, оплодотворенной одним сперматозоидом (зиготы), разделившейся на стадии дробления на две или более самостоятельных частей. Поэтому считается, что они генетически идентичны. Речь может идти только о минимальных различиях по небольшим повторяющимся последовательностям ДНК — мини- и макросателлитам. Не отрицается возможность, что такие последовательности могут оказывать влияние на функции многих генов, в том числе поведенческих. Тем не менее, принимается, что различия между ними связаны со средовыми воздействиями, так как постулируется их генетическая идентичность. Самой знаменитой монозиготной пятерней являются, по-видимому, близнецы Дионн, родившиеся в Канаде в начале века. Среди двоен самыми знаменитыми являются сиамские близнецы Энг и Чанг, родившиеся в 1811 г. в Сиаме (на Таиланде) и связанные тканевой перемычкой протяженностью около 10 см в области грудины. От двух жен-сестер у них родилось 22 ребенка. Первоначальный капитал сиамские близнецы заработали, путешествуя по миру и показывая себя. Затем жили в США (Северная Каролина), имели собственную ферму. В 1874 г. в возрасте 63 лет Чанг скончался ночью от воспаления легких в своей постели. Энг позвал сына, который предложил ему хирургическую операцию, чтобы отделиться от мертвого брата, однако Энг отказался и умер через 2 ч от заражения трупным ядом. С тех пор название «сиамские близнецы» стало нарицательным: его употребляют, когда хотят обозначить высокую степень близости между людьми. Несколько менее известными являются близнецы женского пола Роза и Жозефина Блажек, родившиеся в 1887 г. в Чехословакии. Девочки срослись в области спины и боковой поверхности туловища. Родители отказались от них. Девочки оказались очень музыкальными: научились играть на скрипке, хорошо танцевали, с успехом гастролировали в Европе и США. В 1910 г. Роза родила здорового ребенка. Жозефине было отказано в браке, когда она получила предложение от жениха, т.к. подобная женитьба рассматривалась как двоеженство. В СССР в 1949 г. родились сросшиеся близнецы Маша и Даша. У девочек общими были органы тазовой полости и две нормальные ноги, а одна — рудиментная, недоразвитая, которую пришлось ампутировать. Нервные системы близнецов были автономными. Одна девочка могла спать, а другая бодрствовать. При ходьбе, которой пришлось долго учиться, одна девочка управляла одной ногой, а партнерша - другой. Эту пару близнецов на протяжении многих лет изучали физиологи и психологи. Дизиготные близнецы (ДЗ) развиваются из двух зигот — различных яйцеклеток, оплодотворенных разными сперматозоидами. Генетически они сходны между собой не более, чем обычные братья и сестры (сибсы), так как имеют 50% общих генов. Различия между партнерами ДЗ-близнецовой пары связаны как с генетическими, так и со средовыми факторами. В отличие от МЗ, которые всегда однополые, ДЗ-близнецы могут быть как однополыми, так и разнополыми. Сравнение монозиготных близнецов проводится в рамках метода контроля по партнеру, предложенного Гезеллом в 1929 г. Этот метод позволяет оценить роль того или иного фактора, если партнер МЗ-пары подвергается его воздействию, а другой нет. Последний служит контролем при разработке и индивидуализации медикаментозных воздействий и методов обучения, а также пищевого рациона и др. Применение близнецового метода показало, что не только морфофункциональные структуры, но и формирование ряда психологических признаков, относящихся к познавательным процессам и личностным характеристикам, находятся под контролем генетических факторов. При этом роль последних тем меньше, чем более социален по содержанию изучаемый признак. Причины многоплодия Причины многоплодия до сих пор недостаточно исследованы. Частота МЗ-близнецов одинакова во всех странах мира. Частота ДЗ-близнецов зависит от этнических факторов, возраста матери и порядка рождения. Повышение вероятности рождения ДЗ-близнецов с увеличением возраста матери связано с повышением уровня гонадотропина, приводящего к полиовуляции. Причины повышения гонадотропина могут быть полигенно обусловлены. Гормональная обусловленность ДЗ-близнецовости подтверждается более частым рождением близнецов этого типа у женщин, лечившихся от бесплодия или применявших оральные противозачаточные средства, вызывающие полиовуляцию. Тип наследования МЗ-близнецовости неизвестен. Передача по материнской линии и семейное накопление дали основание для предположения о цитоплазматическом наследовании. Цитогенетический метод Цитогенетическое исследование проводится при подозрении на хромосомную болезнь. Этот метод позволяет идентифицировать перестроенную хромосому, установить тип хромосомной перестройки и происхождение перестроенной хромосомы. Благодаря цитогенетическому методу накоплены данные о различных перестройках индивидуальных хромосом и их фенотипических эффектах, описаны видоспецифические наборы хромосом (кариотипы). С его помощью удалось выявить микрохромосомные перестройки при моногенных синдромах, таких, как синдром Прадера—Вилли, Корнелии де Ланге, Беквита—Видемана и др. Было установлено, что некоторые хромосомные перестройки связаны с повышенным риском новообразований. Описаны хромосомные перестройки в раковых клетках. Препараты хромосом человека можно приготовить из фибробластов кожи, костного мозга, но наиболее доступной для таких исследований является культура лимфоцитов периферической крови. Кровь больного помещают в специальную среду, содержащую необходимые для роста клеток крови питательные вещества, и инкубируют с веществами, стимулирующими клеточное деление. Затем добавляют колхицин, подавляющий процесс образования ахроматиновых нитей веретена деления. Это приводит к остановке митоза на стадии метафазы, в которой хромосомы максимально спирализованы и пригодны для анализа. Цитогенетический метод позволяет определять половой хроматин. Наличие полового хроматина (тельца Барра) на внутренней поверхности ядерной мембраны соматических клеток женщины связано с инактивацией одной из двух Х-хромосом — лайонизацией. Этот процесс имеет случайный характер и происходит в эмбриональном периоде развития, являясь механизмом сбалансированности полов по Х-хромосомам. Присутствие полового хроматина у мужчин, а также наличие дополнительных телец Барра у женщин характерно для нарушений в системе половых хромосом. Возможно определение полового хроматина у плода. Разработан экспресс-метод определения полового хроматина в соскобе буккального эпителия слизистой щеки. Материал соскоба, полученный с помощью шпателя, переносится на предметное стекло и окрашивается 1%-ным раствором ацетоорсеина, накрывается покровным стеклом и изучается с помощью светового микроскопа. Иммуногенетический метод Иммунитет — это невосприимчивость организма к инфекционным и неинфекционным агентам и веществам, обладающим антигенными свойствами. Главным свойством антигенов является стимуляция развития иммунного ответа. Иммуногенетика изучает закономерности наследования механизмов иммунологических процессов и антигенов различных тканей организма. Имеются два типа иммунитета: клеточный, связанный с В- и Т-лимфоцитами, и гуморальный, обусловленный выработкой антител (иммуноглобулинов). Связываясь с антигенами, антитела, образующиеся в организме в ответ на попадание в него различных антигенов, нейтрализуют их. В генетических исследованиях иммунологические методы применяются, когда речь идет о наследственных иммунодефицитных состояниях (врожденный иммунодефицит), например, агаммаглобулинемия, синдром Блума, синдром Чедиака—Хигаши и др. С помощью этих методов диагностируют зиготность близнецов, решают вопросы спорного отцовства, изучают генетические маркеры, ассоциирующиеся с болезнями с наследственной предрасположенностью, исследуют антигенную несовместимость матери и плода по резус-фактору, группам крови системы АВ0 и изоантигенам других систем. Биохимический метод Биохимические методы исследования применяют при подозрении на врожденные дефекты обмена. Они достаточно сложные и дорогостоящие, поэтому исследование проводится в два этапа. На первом этапе используют более дешевые и быстрые исследования. Это так называемые скринирующие (просеивающие) экспресс-методы, позволяющие обследовать большие группы населения. Сюда относится, например, микробиологический тест Гатри для обследования всех новорожденных на фенилкетонурию. Экспресс-методом диагностики фенилкетонурии можно считать также тест Феллинга. Таким тестом на галактоземию и фруктоземию является проба Бенедикта. Для проведения подобных тестов используют кровь и мочу. На втором этапе диагностики пользуются более сложными методами биохимии и молекулярной биологии: методами фракционирования и количественного анализа, жидкостной и газовой хроматографией, иммунохимическими методами, изучают электрофоретическую подвижность белков. Возможно прямое измерение ферментативной активности. Применяются исследования мутантных белков с помощью меченых субстратов. Популяционно-генетический метод Данные, полученные при клинико-генеалогическом и близнецовом методах исследования, сравниваются с данными о частоте встречаемости признака (заболевания) в общей популяции. Частота того или иного гена в конкретной популяции определяет и особенности накопления больных в семьях. Например, высокая частота рецессивного гена в популяции приводит к относительно высокой частоте здоровых гетерозиготных носителей, повышается вероятность брака аа х Аа, в котором наблюдается так называемый псевдодоминантный тип наследования, т.е. вероятность больных и здоровых детей будет составлять 1:1, что характерно для доминантного типа наследования. Частота различных рецессивных болезней зависит от концентрации мутантных генов в популяции. Изучение генетической структуры популяции является необходимым этапом изучения распределения наследственных болезней в семьях. Под популяцией в генетике понимается часть населения, занимающая одну территорию на протяжении многих поколений и свободно вступающая в брак между собой. В этой группе выполняется условие панмиксии и нет изоляционных барьеров, препятствующих свободным бракам. В такой популяции соотношение частот доминантных и рецессивных аллелей при достаточно большом размере популяции сохраняется в ряду поколений без изменений. Закон генетической стабильности выражается формулой Харди—Вайнберга: р2АА: 2pqAa : q2aa, или (р + q)2= 1, тогда (p + q) = 1, т.е. частоты доминантного А и рецессивного гена а в сумме составляют единицу и являются постоянной величиной, а соотношение доминантных гомозигот, гетерозигот и рецессивных гомозигот определяется как квадрат встречаемости доминантного аллеля, произведение доминантного и рецессивного аллелей и квадрат встречаемости рецессивного аллеля соответственно. Популяций, полностью отвечающих требованиям идеальной генетической стабильности по Харди—Вайнбергу, в природе не существует, т.к. для выполнения вышеуказанных условий должны отсутствовать мутационный процесс, естественный отбор и миграция. Однако как рабочая формула закон Харди—Вайнберга с успехом используется в популяционно-генетических исследованиях, ибо в больших популяциях перечисленные процессы протекают достаточно медленно (в отсутствие войн и гуманитарных катастроф) и не вызывают сколько-нибудь значительных изменений соотношения частот аллелей. Популяционно-генетический метод позволяет установить частоты генов болезней в популяции и частоту гетерозиготного носительства. С популяционной частотой сравниваются показатели пробандовой конкордантности при изучении соотносительной роли наследственности и среды и пенетрантности генов близнецовым методом, а также частота болезни среди родственников различной степени родства при изучении болезней с наследственной предрасположенностью. По распространенности частот генов и связанных с ними фенотипов можно судить об адаптивной ценности отдельных генотипов. Благодаря бракам внутри отдельных популяций определенные гены могут ограничиваться пределами конкретных популяций либо распределяться неравномерно между различными популяциями. Если вступление в брак для любых членов популяции равновероятно, то такая популяция называется панмиксной. Если имеются препятствия (этнические, социальные, религиозные), то группы населения, различающиеся по этим параметрам, могут образовывать изоляты внутри популяции. Неизбирательные по указанным признакам браки (аутбридинг) предполагают случайный подбор супругов. Отклонения от панмиксии возникают, когда браки ассортативны, т.е. супруги подбираются по какому-либо признаку, например, по общим дефектам сенсорной сферы, опорно-двигательного аппарата или по психическому недоразвитию. В наше время браки между индивидами, страдающими нарушениями слуха или зрения, являются скорее правилом, чем исключением. Отклонения от панмиксии происходят и тогда, когда в брак вступают родственники. Такой брак называется кровнородственным (инбридинг). Близкородственные браки между родственниками I степени родства (между родителями и детьми и родными братьями и сестрами) называются инцестными. Примеры таких браков можно привести лишь из истории. Так, царица Египта Клеопатра родилась от инцестного брака и состояла в браках с родными братьями. Это было связано со стремлением сохранить свою «голубую» кровь. В настоящее время такие браки повсеместно запрещены. Запрет связан с повышенным риском выявления рецессивной и полигенной патологии. Браки между родственниками II степени родства (дядя — племянница, тетя — племянник) распространены, в частности, в арабских странах, что обусловлено экономическими соображениями. В России частота кровнородственных браков не превышает 1% и в основном в такой брак вступают двоюродные сибсы либо родственники более отдаленных степеней родства. Таким образом, степень родства между индивидуумами в различных популяциях неодинакова. Для ее оценки пользуются коэффициентом инбридинга F(Райт, 1885), определяющим вероятность идентичности по происхождению двух любых аллелей данного локуса. Например, нужно установить вероятность того, что у супругов — дяди и племянницы имеется по одному рецессивному гену фенилкетонурии, полученному от общего предка. Таким общим предком для них является бабушка или дедушка племянницы. Вероятность того, что бабушка (дедушка) передали свой ген (ФКУ) одному из своих детей, составляет 1/2. Вероятность того, что оба ребенка бабушки (дедушки) получили этот ген, составляет 1/2 х 1/2 = 1/4. Вероятность двух независимых событий равна произведению их вероятностей. Вероятность того, что один из детей бабушки передал этот ген своему ребенку, составляет также 1/2. Следовательно, коэффициент инбридинга составит 1/4 х 1/2 = 1/8. Рассуждая так, можно рассчитать, что коэффициент инбридинга для браков двоюродных сибсов составит 1/16, троюродных — 1/32, четвероюродных — 1/64. В небольших популяциях в связи с ограниченностью выбора нарастает инбредность, возникает явление «инбредной депрессии»: число гетерозигот по рецессивной болезни снижается, а гомозигот (больных) повышается. Коэффициент инбридинга может быть рассчитан как для популяций, так и для пары индивидов. Еще один близкий показатель, называемый коэффициентом родства (Ф), можно рассчитать только для двух индивидов. Коэффициент родства Фху— это вероятность того, что любой ген, принадлежащий индивиду X, идентичен гену того же локуса у индивида Y. Коэффициент родства определяет долю общих генов у пары родственников. Так, у монозиготных близнецов 100% общих генов, у родственников I степени родства (родитель—ребенок, родные сибсы) — 50% общих генов, у родственников II степени родства (дяди, тети, племянники, бабушки (дедушки), внуки) — 25% общих генов, у родственников III степени родства (двоюродные сибсы, прадедушки (прабабушки), правнуки) — 12,5% общих генов. Таким образом, долю общих генов у родственников можно определить по формуле (1/2 п), где п — степень родства. Молекулярно-генетический метод В этом методе различают (по направлению исследований): молекулярно-цитогенетические методы и молекулярно-биологические методы. Основными методами ДНК-диагностики являются блот-гибридизация, анализ полиморфизма длин рестрикционных фрагментов ДНК (ПДРФ), полимеразная цепная реакция (ПЦР), анализ полиморфизма микросателлитных последовательностей. Сущность блот-гибридизации заключается в «нарезании» с помощью специальных ферментов (рестриктаз) фрагментов ДНК различной длины, набор которых для каждой рестриктазы постоянен. Смесь фрагментов разделяют с помощью электрофореза, переносят на фильтр, фиксируют и подвергают гибридизации с зондом, имеющим радиоактивную или флюоресцентную метку. Зонд выявляет один фрагмент из множества и комплементарно с ним спаривается. Изменение фрагмента по сравнению с контролем указывает на наличие мутации в гене или в непосредственной близости от него. Если ген картирован, то возможно прямое выявление мутации (делеции, инверсии, транслокации). С такими мутациями в одном гене связаны, например, серповидно-клеточная анемия и дефицит гормона роста. Возможна диагностика вирусных и бактериальных инфекций, онкологических заболеваний, а также оценка риска болезней с наследственной предрасположенностью. Такая диагностика позволяет выявить болезнь в доклинической стадии, когда клинические симптомы практически отсутствуют. Возможна пренатальная диагностика, в том числе преимплантационная, то есть в период, когда дробящаяся зигота еще не внедрилась в стенку матки. Во всех случаях это представляется очень важным для профилактики болезни и связанного с ней аномального развития ребенка. В настоящее время такие методы разработаны для диагностики ФКУ, миодистрофии Дюшенна — Беккера, гемофилии А и Б и некоторых других. При некоторых болезнях пренатальная диагностика позволяет проводить профилактическое пренатальное лечение, например, такое лечение эффективно при болезни Вильсона-Коновалова, связанной с нарушением обмена меди, и при адреногенитальном синдроме, связанном с эндокринными нарушениями. Раннее лечение приводит к заметному снижению тяжести болезни у ребенка. Большое значение имеет ДНК-диагностика рака. Метод флюоресцентной in situe гибридизации — более совершенный аналог метода гибридизации с использованием радиоактивной метки. Гибридизация ДНК проводится с различными ДНК-зондами, клонированными нуклеотидными последовательностями конкретного гена. Для изучения результатов гибридизации используют метод флюоресцентной микроскопии. Метод используется для идентификации хромосом, фрагментов онкогенов и других генов. Метод ДНК-зондовой диагностики. Используется для прямой диагностики наследственных болезней. Еще один подход к ДНК-диагностике наследственных болезней основывается на анализе семейного распределения сайтов с менделевским наследованием (участков молекулы ДНК) узнавания рестриктаз в гене и изучении полиморфизма длин рестрикционных фрагментов (ПДРФ). С помощью ПДРФ осуществляют пренатальную диагностику ФКУ. Одним из вариантов в ДНК-диагностике является также подбор ПДРФ-зондов, тесно сцепленных с маркерами болезни. Маркерный участок не обязательно локализован в изучаемом гене, однако он должен быть на достаточно близком расстоянии, чтобы частота рекомбинации между ним и ПДРФ-маркером была пренебрежительно мала. В этом случае могут быть неизвестны как мутантные гены, так и первичные биохимические дефекты. Для ДНК-диагностики используются такие методы полимеразной реактивности in situe и полимеразная цепная реакция, позволяющие амплификацию (размножение небольших участков ДНК-праймеров, соответствующих фрагментам того или иного гена). Имея базу данных праймеров, можно картировать гены и диагностировать мутации. |