Пособие генетика. Минеева Лариса Юрьевна заведующий кафедрой общей биологии и ботаники гоу впо ивГУ, доцент, кандидат педагогических наук Данное учебное пособие
Скачать 1.1 Mb.
|
Хромосомные мутации Этот тип мутаций объединяет хромосомные нарушения, связанные с изменением структур хромосом (хромосомные аберрации). Хромосомные аберрации можно классифицировать, используя различные подходы. В зависимости от того, в какой момент клеточного цикла — до или после репликации хромосом возникли перестройки — выделяют аберрации хромосомного и хроматидного типов. Аберрации хромосомного типа возникают на предсинтетической стадии — G1 фазе, когда хромосома представлена однонитевой структурой. Аберрации хроматидного типа возникают после репликации хромосом в фазах S и G2 и затрагивают структуру одной из хрома-тид. В результате хромосома на стадии метафазы содержит одну измененную и одну нормальную хроматиды. Если же перестройка произошла после репликации и затронула обе хроматиды, появляется изохроматидная аберрация. Морфологически она неотличима от аберраций хромосомного типа, хотя по происхождению относятся к хроматидному типу. Среди аберраций хромосомного и хроматидного типов выделяют простые и обменные аберрации. В их основе лежат нарушения одной или нескольких хромосом. Простые аберрации — фрагменты (делеции) — возникают в результате простого разрыва хромосомы. В каждом случае при этом образуется 2 типа фрагментов — центрические и ацентрические. Различают терминальные (концевые) и интерстициальные (средних участков хромосом) делеции или фрагменты. Обменные аберрации очень разнообразны. В их основе лежит обмен участками хромосом (или хроматид) между разными хромосомами (межхромосомный обмен) или внутри одной хромосомы (внутрихромосомный обмен) при перераспределении генетического материала. Обменные перестройки бывают двух типов: симметричные и асимметричные. Асимметричные обмены приводят к образованию полицентрических хромосом и ацентрических фрагментов. При симметричных же обменах происходит соединение ацентрических фрагментов с центрическими, в результате чего хромосомы, вовлеченные в обменную аберрацию, остаются моноцентрическими. Внутрихромосомные обмены могут происходить как внутри одного (внутриплечевой обмен), так и между обоими плечами хромосомы (межплечевой обмен). Кроме того, обмены могут быть простыми и сложными, когда в процесс вовлечены несколько хромосом. В результате могут образоваться необычные и достаточно сложные конфигурации хромосом. Любой обмен (симметричный и асимметричный, межхромосомный и внутрихромосомный) может быть полным (реципрокным) или неполным (нереципрокным). При полном обмене происходит соединение всех поврежденных участков, а при неполном обмене часть из них может остаться с открытым поврежденным участком. Геномные мутации Геномные мутации изменяют число хромосом. Такие изменения возникают обычно при нарушении распределения хромосом по дочерним клеткам. Различают два основных типа геномных мутаций:
При полиплоидии число наборов негомологичных хромосом в кариотипе отличается от двух (Зn; 4n и т.д.). Это результат нарушений в митотическом цикле, когда удвоение хромосом происходит без последующего деления ядра и клетки. Одной из причин подобного феномена может быть эндомитоз, при котором происходит блокирование ахроматического аппарата в клетке и сохранение ядерной мембраны в течение всего митотического цикла. Разновидностью эндомитоза является эндоредупликация — редупликация хромосом, происходящая вне клеточного деления. При эндоредуплика-ции как бы повторяются два следующих друг за другом S периода митотического цикла. В результате этого в последующем митозе будет наблюдаться двойной (тетраплоидный) набор хромосом. Такие мутации чаще всего приводят к гибели плода еще в эмбриогенезе. Триплоидия обнаруживается в 4%, а тетраплоидия приблизительно в 1% всех выкидышей. Для индивидуумов с такими кариотипами характерны многочисленные пороки развития, в том числе асимметричное телосложение, слабоумие, гермафродитизм. Тетраплоидные эмбрионы погибают на ранних сроках беременности, эмбрионы же с триплоидными клетками изредка выживают, но только если одновременно с триплоидными содержат клетки с нормальным кариотипом. Впервые синдром триплоидии (69, XXY) был обнаружен у человека в 60-хх гг. XX в. В литературе описано около 60 случаев триплоидии у детей. Максимальная продолжительность их жизни составила 7 дней. Анеуплоидия — некратное гаплоидному уменьшение или увеличение числа хромосом (2n+1; 2n+2; 2n-1 и т.д.) — возникает в результате ненормального поведения гомологических хромосом в мейозе или сестринских хроматид в митозе. При нерасхождении хромосом на одной из стадий гаметогенеза в половых клетках могут оказаться лишние хромосомы. В результате при последующем слиянии с нормальными гаплоидными гаметами образуются зиготы 2n +1 - или трисомии по какой-либо из хромосом. Если же в гамете оказывается на одну хромосому меньше, то при последующем оплодотворении образуется зигота 2 n - 1, или моносомик по одной из хромосом. Нерасхождение может затронуть не одну, а несколько пар хромосом, что ведет к трисомии или моносомии по нескольким хромосомам. Часто лишние хромосомы обусловливают депрессию развития или гибель особи, их несущей. Т Е М А № 6 Типы наследования у человека Менделирующие признаки Всем эукариотическим организмам присущи открытые Г.Менделем общие закономерности наследования признаков. Для их изучения необходимо вспомнить основные термины и понятия, используемые в генетике. Главный постулат Менделя, который он доказал в своих известных экспериментах на горохе огородном, состоит в том, что каждый признак определяется парой наследственных задатков, позже получивших название аллельных генов. С развитием хромосомной теории наследственности выяснилось, что аллельные гены находятся в одинаковых локусах гомологичных хромосом и кодируют один и тот же признак. Пара аллельных генов может быть одинакова (АА)или (аа),тогда говорят, что особь гомозиготна по данному признаку. Если же аллельные гены в паре разные (Аа),то особь по данному признаку гетерозиготна. Совокупность генов данного организма называется генотипом. Правда часто под генотипом понимают одну или несколько пар аллельных генов, которые отвечают за один и тот же признак. Совокупность признаков данного организма называют фенотипом, фенотип формируется в результате взаимодействия генотипа с внешней средой. Г. Мендель ввел понятия доминантных и рецессивных генов. Аллель, который определяет фенотип гетерозиготы, он назвал доминантным. Например, ген Ав гетерозиготе Аа. Другой аллель, не проявляющий себя в гетерозиготном состоянии, назван им рецессивным. В нашем случае это ген а. Основные закономерности наследования признаков по Менделю (закон единообразия гибридов первого поколения, расщепление на фенотипические классы гибридов второго поколения и независимого комбинирования генов) реализуются благодаря существованию закона чистоты гамет. Суть последнего состоит в том, что пара аллельных генов, определяющая тот илииной признак: а) никогда не смешивается; б) в процессе гаметогенеза расходится в разные гаметы, то есть в каждую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосомах, которые в анафазе мейоза расходятся к разным полюсам и попадают в разные гаметы. Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г. Meнделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования: аутосомно-доминантный, аутосомно-рецессивный, наследование признаков, сцепленных с половыми хромосомами, и за счет взаимодействия неаллельных генов. Разработал Г.Мендель и основной метод генетики — гибридологический. Он основан на скрещивании особей одного вида, обладающих альтернативными признаками, и количественном анализе полученных фенотипических классов. Естественно, этот метод не может использоваться в генетике человека. Первое описание аутосомно-доминантного наследования аномалий у человека дано в 1905 г. Фараби. Родословная была составлена для семьи с короткопалостью (брахидактилией). У больных укорочены и частично редуцированы фаланги пальцев рук и ног, кроме того, в результате укорочения конечностей, для них характерен низкий рост. Признак передается от одного из родителей примерно половине детей, независимо от пола. Анализ родословных других семей свидетельствует, что брахидактилия отсутствует среди потомства родителей, не являющихся носителями данного гена. Поскольку признак не может существовать в скрытом виде, следовательно, он является доминантным. А его проявления, независимо от пола, позволяют заключить, что он не сцеплен с полом. На основании изложенного, можно сделать вывод, что брахидактилия определяется геном, находящимся в аутосомах, и является доминантной патологией. Использование генеалогического метода позволило выявить доминантные, не сцепленные с полом признаки у человека. Это — темный цвет глаз, вьющиеся волосы, переносица с горбинкой, прямой нос (кончик носа смотрит прямо), ямочка на подбородке, раннее облысение у мужчин, праворукость, способность свертывать язык в трубочку, белый локон надо лбом, «габсбургская губа» — нижняя челюсть узкая, выступающая вперед, нижняя губа отвислая и полуоткрытый рот. По аутосомно-доминантному типу наследуются также некоторые патологические признаки человека: полидактилия или многопалость (когда на руке или ноге имеется от 6 до 9 пальцев), синдактилия (сращение мягких или костных тканей фаланг двух и более пальцев), брахидактилия (недоразвитость дистальных фаланг пальцев, приводящая к короткопалости), арахнодактилия (сильно удлиненные "паучьи" пальцы, один из симптомов синдрома Марфана), некоторые формы близорукости. Большинство носителей аутосомно-доминантной аномалии являются гетерозиготами. Иногда случается, что два носителя одной и той же доминантной аномалии вступают в брак и имеют детей. Тогда четверть из них будут гомозиготами по мутантному доминантному аллелю (АА). Многие случаи из медицинской практики указывают на то, что гомозиготы по доминантным аномалиям поражены тяжелее, чем гетерозиготы. Например, в браке между двумя носителями брахидактилии родился ребенок, у которого не только не доставало пальцев на руках и ногах, но и имелись множественные уродства скелета. Он умер в возрасте одного года. Другой ребенок в этой семье был гетерозиготным и имел обычные симптомы брахидактилии. Аутосомно-рецессивные менделирующие признаки у человека определяются генами, локализованными в аутосомах, и могут проявиться у потомства в браке двух гетерозигот, двух рецессивных гомозигот или гетерозиготы и рецессивной гомозиготы. Исследования показывают, что большинство браков, среди потомков которых наблюдаются рецессивные заболевания, происходит между фенотипически нормальными гетерозиготами (Аах Аа). В потомстве такого брака генотипы АА, Ааи аабудут представлены в соотношении 1:2:1, и вероятность того, что ребенок окажется пораженным, составит 25%. По аутосомно-рецессивному типу наследуются мягкие прямые волосы, курносый нос, светлые глаза, тонкая кожа и резус-отрицательная первая группы крови, многие болезни обмена веществ: фенилкетонурия, галактоземия, гистидинимия и др., а также пигментная ксеродерма. Пигментная ксеродерма — одно из рецессивных заболеваний — относительно недавно привлекла внимание молекулярных биологов. Эта патология обусловлена неспособностью клеток кожи больного репарировать повреждения ДНК, вызванные ультрафиолетовым излучением. В результате развивается воспаление кожи, особенно на лице, с последующей атрофией. Наконец, развивается рак кожи, приводящий в отсутствие лечения к летальному исходу. У больных редким рецессивным заболеванием степень кровного родства между родителями обычно значительно выше среднего уровня в популяции. Как правило, родители наследуют этот ген от общего предка и являются гетерозиготами. Подавляющее большинство больных аутосомно-рецессивными заболеваниями — это дети двух гетерозигот. Помимо аутосомно-доминантного и аутосомно-рецессивного типов наследования у человека выявляются также неполное доминирование, кодоминирование и сверхдоминирование. Неполное доминирование связано с промежуточным проявлением признака при гетерозиготном состоянии аллелей (Аа). Например, большой нос определяется двумя аллелями АА,маленький нос — аллелями аа,нормальный нос средних размеров — Аа. По типу неполного доминирования у человека наследуются выпуклость губ и размеры рта и глаз, расстояние между глазами. Кодоминирование — это такое взаимодействие аллельных генов, при котором в гетерозиготном состоянии оказываются и работают вместе два доминантных гена одновременно, то есть каждый аллель детерминирует свой признак. Наиболее удобно рассмотреть кодоминирование на примере наследования групп крови. Группы крови системы АВ0 определяются тремя аллелями: А, В и 0. Причем аллели А и В являются доминантными, а аллель 0 — рецессивным. Попарное сочетание этих трех аллелей в генотипе дает четыре группы крови. Аллельные гены, определяющие группы крови, находятся в девятой паре хромосом человека и обозначаются соответственно: IA, Iв и I°. Первая группа крови определяется наличием в генотипе двух рецессивных аллелей I° I°. Фенотипически это проявляется наличием в сыворотке крови антител альфа и бетта. Вторая группа крови может определяться двумя доминантными аллелями IA IA, если человек гомозиготен, или аллелями IA I°, если он гетерозиготен. Фенотипически вторая группа крови проявляется наличием на поверхности эритроцитов антигенов группы А и присутствием в сыворотке крови антител бетта. Третья группа определяется функционированием аллеля В. И в этом случае генотип может быть гетерозиготен (Iв I°) или гомозиготен (Iв Iв). Фенотипически у людей с третьей группой крови на поверхности эритроцитов выявляются антигены В, а фракции белков крови содержат антитела альфа. Люди с четвертой группой крови сочетают в генотипе два доминантных аллеля АВ (IA Iв), причем оба они функционируют: поверхность эритроцитов несет оба антигена (А и В), а сыворотка крови во избежание агглютинации соответствующих сывороточных белков альфа и бетта не содержит. Таким образом, люди с четвертой группой крови являют примеры кодоминирования, поскольку у них одновременно работают два доминантных аллельных гена. Явление сверхдоминирования связано с тем, что в ряде случаев доминантные гены в гетерозиготном состоянии проявляются сильнее, чем в гомозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с такими сложными признаками, как жизнеспособность, общая продолжительность жизни и др. Таким образом, у человека, как и у остальных эукариот, известны все типы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаимодействиями. Используя менделевские законы наследования, можно рассчитать вероятность рождения детей с теми или иным моделирующими признаками. Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, основанный на построении родословных. Взаимодействие генов До сих пор мы рассматривали только признаки, контролируемые моногенно. Однако на фенотипическое проявление одного гена обычно влияют другие гены. Зачастую признаки формируются при участии нескольких генов, взаимодействие между которыми отражается в фенотипе. Примером сложного взаимодействия генов могут служить закономерности наследования системы резус-фактор: резус плюс (Rh+) и резус минус (Rh-). В 1939 г. при исследовании сыворотки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВ0 группе крови мужа, были обнаружены особые антитела, сходные с получаемыми при иммунизации экспериментальных животных эритроцитами макаки-резус. Выявленные у больной антитела получили название резус-антител, а ее группа крови — резус-отрицательной. Группа крови резус-положительная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых структурными генами, несущими информацию о мембранных полипептидах. Гены, определяющие резус-фактор, находятся в первой паре хромосом человека. Резус-положительная группа крови является доминантной, резус-отрицательная — рецессивной. Резус-положительные люди могу быть гетерозиготными (Rh+/Rh-) или гомозиготными (Rh+/Rh+). Резус-отрицательные — только гомозиготными (Rh-/Rh-). Позже выяснилось, что антигены и антитела резус фактора имеют сложную структуру и состоят из трех компонентов. Условно антигены резус-фактора обозначают буквами латинского алфавита С, D, Е. На основе анализа генетических данных о наследовании резус-фактора в семьях и популяциях была сформулирована гипотеза о том, что каждый компонент резус-фактора определяется своим геном, что эти гены сцеплены вместе в один локус и имеют общий оператор или промотор, который регулирует их количественную экспрессию. Поскольку антигены обозначаются буквами С, D, Е, то такими же строчными буквами обозначают гены, отвечающие за синтез соответствующего компонента. Генетические исследования в семьях показывают возможность кроссинговера между тремя генами в локусе резус-фактора у гетерозигот. Популяционные исследования выявили разнообразные фенотипы: CDE, CDe, cDE, cDe, CdE, Cde, cdE, cde. Взаимодействия между генами, определяющими резус-фактор, сложные. По всей видимости, главным фактором, определяющим резус-антиген, является антиген D. Он обладает гораздо большей иммуногенностью, чем антигены С и Е. Отрицательный резус-фактор выявляется у людей с генотипом d/d, положительный — у людей с генотипом DD и D/d. У гетерозигот CDe/Cde и Cde/cDe с сочетанием генов Cde в резус-локусе экспрессия фактора D изменяется, в результате чего формируется фенотип Du со слабой реакцией в ответ на введение резус-положительных антигенов. Следовательно, работа генов в резус локусе может регулироваться количественно, и фенотипическое проявление резус-фактора у резус-положительных людей бывает различным: большим или меньшим. Несовместимость по резус-фактору плода и матери способна стать причиной развития патологии у плода или самопроизвольного выкидыша на ранних сроках беременности. С помощью специальных чувствительных методов удалось выявить, что во время родов около 1 мл крови плода может попадать в кровоток матери. Если мать — резус-отрицательная, а плод — резус-положительный, то после первых родов мать будет сенсибилизирована к резус-положительным антигенам. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в ее крови может резко возрасти, и под влиянием их разрушающего действия у плода возникает характерная клиническая картина гемолитической патологии, выражающейся в анемии, желтухе или водянке. В классической генетике наиболее изученными являются три типа взаимодействия неаллельных генов: эпистаз, комплементарность и полимерия. Они определяют многие наследуемые признаки человека. Эпистаз — это такой тип взаимодействия неаллельных генов, при котором одна пара аллельных генов подавляет действие другой пары. Различают эпистаз доминантный и рецессивный. Доминантный эпистаз проявляется в том, что доминантный аллель в гомозиготном (АА)или гетерозиготном (Аа)состоянии подавляет проявление другой пары аллелей. При рецессивном эпистазе ингибирующий ген в рецессивном гомозиготном состоянии (аа)не дает возможность проявиться эпистатируемому гену. Подавляющий ген называют супрессором или ингибитором, а подавляемый — гипостатическим. Этот тип взаимодействия наиболее характерен для генов, участвующих в регуляции онтогенеза и иммунных систем человека. Примером рецессивного эпистаза у человека может служить «бомбейский феномен». В Индии была описана семья, в которой родители имели вторую (А0) и первую (00) группу крови, а их дети — четвертую (АВ) и первую (00). Чтобы ребенок в такой семье имел группу крови АВ, мать должна иметь группу крови В, но никак ни 0. Позже было выяснено, что в системе групп крови АВ0 имеются рецессивные гены-модификаторы, которые в гомозиготном состоянии подавляют экспрессию антигенов на поверхности эритроцитов. Например, человек с третьей группой крови должен иметь на поверхности эритроцитов антиген группы В, но эпистатирующий ген-супрессор в рецессивном гомозиготном состоянии (h/h) подавляет действие гена В, так что соответствующие антигены не образуются, и фенотипически проявляется группа крови 0. Описанный локус гена-супрессора не сцеплен с локусом АВ0. Гены-супрессоры наследуются независимо от генов, определяющих группы крови АВ0. Бомбейский феномен имеет частоту 1 на 13 000 среди индусов, говорящих на языке махарати и живущих в окрестностях Бомбея. Он распространен также в изоляте на острове Реюньон. По-видимому, признак детерминирован нарушением одного из ферментов, участвующих в синтезе антигена. Комплементарность — это такой тип взаимодействия, при котором за признак отвечают несколько неаллельных генов, причем разное сочетание доминантных и рецессивных аллелей в их парах изменяет фенотипическое проявление признака. Но во всех случаях, когда гены расположены в разных парах хромосом, в основе расщеплений лежат цифровые законы, установленные Менделем. Так, чтобы человек имел нормальный слух, необходима согласованная деятельность нескольких пар генов, каждый из которых может быть представлен доминантными или рецессивными аллелями. Нормальный слух развивается только в том случае, если каждый из этих генов имеет хотя бы один доминантный аллель в диплоидном наборе хромосом. Если хотя бы одна пара аллелей представлена рецессивной гомозиготой, то человек будет глухим. Поясним сказанное простым примером. Предположим, что нормальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВb, АаВВ, АаВb.Наследственная глухота определяется генотипами: ааbb, Ааbb, ААbb, ааВb, ааВВ. Используя законы Менделя для дигибридного скрещивания, легко рассчитать, что глухие родители (ааВВ х ААbb) могут иметь детей с нормальным слухом (АаВb), а нормально слышащие родители при соответствующем сочетании генотипов АаВb х АаВb с высокой долей вероятности (более 40%) — глухих детей. Полимерия — обусловленность определенного признака несколькими парами неаллельных генов, обладающих одинаковым действием. Такие гены называются полимерными. Если число доминантных аллелей влияет на степень выраженности признака, полимерия именуется кумулятивной. Чем больше доминантных аллелей, тем более интенсивно выражен признак. По типу кумулятивной полимерии обычно наследуются признаки, которые можно выразить количественно: цвет кожи, цвет волос, рост. Цвет кожи и волос человека, а также цвет радужной оболочки глаз обеспечивает пигмент меланин. Формируя окраску покровов, он предохраняет организм от воздействия ультрафиолетовых лучей. Существует два типа меланинов: эумеланин (черный и темно-коричневый) и феумеланин (желтый и рыжий). Меланин синтезируется в клетках из аминокислоты тирозина в несколько этапов. Регуляция синтеза осуществляется многими путями и зависит, в частности, от скорости деления клеток. При ускорении митозов клеток в основании волоса образуется феумеланин, а при замедлении — эумеланин. Описаны некоторые формы злокачественного перерождения клеток кожного эпителия, сопровождающиеся накоплением меланина (меланомы). Все цвета волос, за исключением рыжих, составляют непрерывный ряд от темного до светлого (соответственно уменьшению концентрации меланина) и наследуются полигенно по типу кумулятивной полимерии. Считается, что эти различия обусловлены чисто количественными изменениями в содержании эумеланина. Цвет рыжих волос зависит от наличия феумеланина. Окраска волос обычно меняется с возрастом и стабилизируется с наступлением половой зрелости. Цвет радужной оболочки глаз определяют несколько факторов. С одной стороны, он зависит от присутствия гранул меланина, а с другой — от характера отражения света. Черный и коричневый цвета обусловлены многочисленными пигментными клетками в переднем слое радужной оболочки. В светлых глазах содержание пигмента значительно меньше. Преобладание голубого цвета в свете, отраженном от переднего слоя радужной оболочки, не содержащей пигмента, объясняется оптическим эффектом. Различное содержание пигмента, определяет весь диапазон цвета глаз. По типу кумулятивной полимерии наследуется также пигментация кожи человека. На основе генетических исследований семей, члены которых имеют разную интенсивность кожной пигментации, предполагается, что цвет кожи человека определяют три или четыре пары генов. Признание принципа взаимодействия генов наводит на мысль о том, что все гены так или иначе взаимосвязаны в своем действии. Если один ген оказывает влияние на работу других генов, то он может влиять на проявление не только одного, но и нескольких признаков. Такое множественное действие гена называют плейотропией. Наиболее ярким примером плейотропного действия гена у человека является синдром Марфана, уже упоминавшаяся аутосомно-доминантная патология. Арахнодактилия ("паучьи" пальцы) — один из симптомов синдрома Марфана. Другими симптомами являются высокий рост из-за сильного удлинения конечностей, гиперподвижность суставов, ведущий к близорукости, подвывих хрусталика и аневризм аорты. Синдром с одинаковой частотой встречается у мужчин и женщин. В основе указанных симптомов лежит дефект развития соединительной ткани, возникающий на ранних этапах онтогенеза и приводящий к множественным фенотипическим проявлениям. Плейотропным действием обладают многие наледственные патологии. Определенные этапы метаболизма обеспечивают гены. Продукты метаболических реакций, в свою очередь регулируют, а возможно, и контролируют другие метаболические реакции. Поэтому нарушения метаболизма на одном этапе отразятся на последующих этапах, так что нарушение экспрессии одного гена окажет влияние на несколько элементарных признаков. Наследственность и среда Фенотипическое проявление признака определяется генами, отвечающими за этот признак, взаимодействием детерминирующих с другими генами и условиями внешней среды. Следовательно, степень фенотипической выраженности детерминированного признака (экспрессивность) может изменяться: усиливаться или ослабляться. Для многих доминантных признаков характерно, что ген проявляется у всех гетерозигот, но в разной степени. Многие доминантные заболевания обнаруживают значительную индивидуальную изменчивость и по возрасту начала, и по тяжести проявления, и внутри одной семьи, и в разных семьях. В ряде случаев признак может вообще не выражаться фенотипически, несмотря на генотипическую предопределенность. Частота фенотипического проявления данного гена среди его носителей называется пенетрантностью и выражается в процентах. Пенетрантность бывает полной, если признак проявляется у всех носителей данного гена (100%), и неполной, если признак проявляется только у части носителей. В случае неполной пенетрантности иногда при передаче признака одно поколение пропускается, хотя лишенный его индивид, судя по родословной, должен быть гетерозиготным. Пе-нетрантность — это статистическое понятие. Оценка ее величины часто зависит от применяемых методов обследования. Генетика пола Из 46 хромосом (23 пары) в кариотипе человека 22 пары одинаковы у мужчин и женщин (аутосомы), а одна пара, называемая половой, у разных полов отличается: у женщин — XX, у мужчин — XY. Половые хромосомы представлены в каждой соматической клетке индивида. При образовании гамет во время мейоза гомологичные половые хромосомы расходятся в разные половые клетки. Следовательно, каждая яйцеклетка помимо 22 аутосом несет одну половую хромосому X. Все сперматозоиды также имеют гаплоидный набор хромосом, из которых 22 — аутосомы, а одна — половая. Половина сперматозоидов содержит X, другая половина — Y хромосому. Поскольку женские половые хромосомы одинаковы и все яйцеклетки несут Х-хромосому, то женский пол у человека называют гомогаметным. Мужской же пол из-за различия половых хромосом (X или Y) в сперматозоидах именуют гетерогаметным. Пол человека определяется в момент оплодотворения. Женщина имеет один тип гамет — X, мужчина — два типа гамет: X и Y, причем, согласно законам мейоза, образуются они в равной пропорции. При оплодотворении хромосомные наборы гамет объединяются. Напомним, что зигота содержит 22 пары аутосом и одну пару половых хромосом. Если яйцеклетку оплодотворил сперматозоид с Х-хромосомой, то в зиготе пара половых хромосом будет XX, из нее разовьется девочка. Если же оплодотворение произвел сперматозоид с Y-хромосомой, то набор половых хромосом в зиготе — XY. Такая зигота даст начало мужскому организму. Таким образом, пол будущего ребенка определяет гетерогаметный по половым хромосомам мужчина. Соотношение полов при рождении, по данным статистики, соответствует примерно 1:1. Хромосомное определение пола — не единственный уровень половой дифференцировки. Большую роль в этом процессе у человека играет гормональная регуляция, происходящая с помощью половых гормонов, которые синтезируются половыми железами. Закладка половых органов человека начинается у пятинедельного эмбриона. В зачатки гонад из желточного мешка мигрируют первичные клетки зародышевого пути, которые, размножаясь митозом, дифференцируются в гонии и становятся предшественниками гамет. У зародышей обоих полов миграция проходит одинаково. Если же в клетках зачатков гонад присутствует Y-хромосома, то начинают развиваться семенники, причем начало дифференцировки связано с функционированием эухроматинового района Y-хромосомы. Если же Y-хромосома отсутствует, то развиваются яичники, что соответствует женскому типу. Человек по своей природе бисексуален. Зачатки половой системы одинаковы у зародышей обоих полов. Если активность Y - хромосомы подавлена, то зачатки половых органов развиваются по женскому типу. При полном отсутствии всех элементов становления мужского пола формируются женские половые органы. Тип вторичных половых признаков обусловлен дифференцировкой гонад. Половые органы формируются из мюллеровых и вольфовых каналов. У женщин мюллеровы протоки развиваются в фаллопиевы трубы и матку, а вольфовы атрофируются. У мужчин вольфовы каналы развиваются в семенные протоки и семенные пузырьки. Под влиянием хорионического гонадотропина матери лежащие в эмбриональных семенниках клетки Лейдига синтезируют стероидные гормоны (тестостерон), которые участвуют в регуляции развития особи по мужскому типу. Одновременно в семенниках в клетках Сертоли синтезируется гормон, ингибирующий дифференцировку мюллеровых протоков. Нормальные особи мужского пола развиваются только в случае, если все гормоны, действующие на зачатки внешних и внутренних половых органов, «срабатывают» в определенное время в заданном месте. В настоящее время описано около 20 разнообразных дефектов генов, которые при нормальном (XY) кариотипе по половым хромосомам приводят к нарушению дифференцировки внешних и внутренних половых признаков, (гермафродитизму). Эти мутации связаны с нарушением: а) синтеза половых гормонов; б) восприимчивости рецепторов к ним; в) работы ферментов, участвующих в синтезе регулирующих факторов и т.д. Наследование признаков, сцепленных с полом Х- и Y-хромосомы гомологичны, поскольку обладают общими гомологичными участками, где локализованы аллельные гены. Однако, несмотря на гомологию отдельных локусов, эти хромосомы различаются по морфологии. Ведь, помимо общих участков, они несут большой набор различающихся генов. В Х-хромосоме лежат гены, которых нет в Y-хромосоме, а ряд генов Y-хромосомы отсутствуют в Х-хромосоме. Таким образом, у мужчин в половых хромосомах некоторые гены не имеют второго аллеля в гомологичной хромосоме. В таком случае признак определяется не парой аллельных генов, как обычный менделирующий признак, а только одним аллелем. Подобное состояние гена называется гемизиготным, а признаки, развитие которых обусловлено одиночным аллелем, расположенным в одной из альтернативных половых хромосом, получили название сцепленных с полом. Она преимущественно развиваются у одного из двух полов и по-разному наследуются у мужчин и женщин. Признаки, сцепленные с Х-хромосомой, могут быть рецессивными и доминантными. К рецессивным относятся: гемофилия, дальтонизм (неспособность различать красный и зеленый цвета), атрофия зрительного нерва и миопатия Дюшена. К доминантным — рахит, не поддающийся лечению витамином Д, и темная эмаль зубов. Рассмотрим наследование, сцепленное с Х-хромосомой, на примере рецессивного гена гемофилии. У мужчины ген гемофилии, локализованный в Х-хромосоме, не имеет аллеля в Y-xpoмосоме, то есть находится в гемизиготном состоянии. Следовательно, несмотря на то, что признак рецессивный, у мужчин он проявляется: N -ген нормальной свертываемости крови, h — ген гемофилии; XhY — мужчина с гемофилией; XNY — мужчина здоров. У женщин признак определяется парой аллельных генов в половых хромосомах XX, следовательно, гемофилия может проявиться только в гомозиготном состоянии: XNXN — женщина здорова. XNXh — гетерозиготная женщина, носительница гена гемофилии, здорова, XhXh — женщина с гемофилией. Законы передачи признаков, сцепленных с Х-хромосомами, были впервые изучены Т. Морганом. Помимо Х-сцепленных, у мужчин имеются Y-сцепленные признаки. Они называются голандрическими. Определяющие их гены локализованы в тех районах Y-хромосом, которые не имеют аналогов в Х-хромосомах. Голандрические признаки также определяются только одним аллелем, а поскольку их гены находятся только в Y-хромосоме, то выявляются они у мужчин и передаются от отца к сыну, вернее — ко всем сыновьям. К голандрическим признакам относятся: волосатость ушей, перепонки между пальцами ног, ихтиоз (кожа имеет глубокую исчерченность и напоминает рыбью чешую). Гомологичные районы Х- и Y-хромосом содержат аллельные гены, с равной вероятностью встречающиеся у лиц мужского и женского пола. К числу определяемых ими признакам относятся общая цветовая слепота (отсутствие цветового зрения) и пигментная ксеродерма. Оба эти признака являются рецессивными. Признаки, связанные с аллельными генами, находящимися в X- и Y-хромосомах, наследуются по классическим менделевским законам. Наследование, ограниченное и контролируемое полом Признаки человека, наследование которых каким-то образом связано с полом, подразделяются на несколько категорий. Одна из категорий — признаки, ограниченные полом. Их развитие обусловлено генами, расположенными в аутосомах обоих полов, но проявляющимися только у одного пола. Например, гены, определяющие ширину таза женщины, локализованы в аутосомах, наследуются и от отца и от матери, но проявляются только у женщин. То же касается возраста полового созревания девочек. Среди мужских признаков, ограниченных полом, можно назвать количество и распределение волосяного покрова на теле. К иной категории относятся признаки, контролируемые полом, или зависимые от пола. Развитие соматических признаков обусловлено генами, расположенными в аутосомах, проявляются они у мужчин и женщин, но по-разному. Например, у мужчин раннее облысение — признак доминантный, он проявляется как у доминантных гомозигот (Аа) так и у гетерозигот (Аа). У женщин этот признак рецессивный, он проявляется только у рецессивных гомозигот (аа). Поэтому лысых мужчин гораздо больше, чем женщин. Другим примером может служить подагра, у мужчин ее пенетрантность выше: 80% против 12% у женщин. Значит, чаще подагрой болеют мужчины. Экспрессивность признаков, контролируемых полом, обусловлена половыми гормонами. Например, тип певческого голоса (бас, баритон, тенор, сопрано, меццо-сопрано и альт) контролируется половой конституцией. Начиная с периода полового созревания, признак находится под влиянием половых гормонов. Сцепление генов и карты хромосом Хромосомная теория наследственности была сформулирована и экспериментально доказана Т. Морганом и его сотрудниками. Согласно этой теории, гены находятся в хромосомах и расположены в них линейно. Гены, локализованные в одной хромосоме, называются сцепленными, наследуются вместе и образуют группу сцепления. Количество групп сцепления соответствует числу пар гомологичных хромосом. У человека 46 хромосом: 22 пары аутосом и одна пара половых хромосом (XX или XY), следовательно, у женщин 23 группы сцепления, а у мужчин — 24, так как половые хромосомы мужчины (XY) не полностью гомологичны друг другу. Каждая из половых хромосом мужчины имеет гены, характерные только для Х- и только для Y-хромосомы, которым соответствуют группы сцепления Х- и Y-хромосомы. Гены, локализованные в одной хромосоме и образующие группу сцепления, сцеплены не абсолютно. В зиготене профазы первого мейотического деления гомологичные хромосомы сливаются вместе с образованием бивалентов, затем в пахитене происходит кроссинговер-обмен участками между хроматидами гомологичных хромосом. Кроссинговер — обязательный процесс. Он осуществляется в каждой паре гомологичных хромосом. Чем дальше друг от друга расположены гены в хромосоме, тем чаще между ними происходит кроссинговер. Благодаря этому процессу, возрастает разнообразие сочетания генов в гаметах. Например, пара гомологичных хромосом содержит сцепленные гены АВ и ab. В профазе мейоза гомологичные хромосомы конъюгируют и образуют бивалент: АВ ab Если кроссинговер между генами А и В не произойдет, то в результате мейоза образуется два типа некроссоверных гамет: АВ и ab. Если же кроссинговер состоится, то получатся кроссоверные гаметы: Ab иаВ, то есть группы сцепления изменятся. Чем более удалены друг от друга гены А и В, тем больше возрастает вероятность образования и, соответственно число кроссоверных гамет. Если гены в большой хромосоме расположены на достаточном расстоянии друг от друга и между ними в мейозе происходят многочисленные перекресты, то они могут наследоваться независимо. Открытие кроссинговера позволило Т. Моргану и сотрудникам его школы в первые два десятилетия XX века разработать принцип построения генетических карт хромосом. Явление сцепления было использовано ими для выяснения локализации генов, расположенных в одной хромосоме, и создания генных карт плодовой мушки Drosophila melanogaster. На генетических картах гены располагаются линейно друг за другом на определенном расстоянии. Расстояние между генами определяется в процентах кроссинговера, или в морганидах (1 % кроссинговера равен одной морганиде). Для построения генетических карт у растений и животных проводят анализирующие скрещивания, в которых достаточно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетическую карту по трем сцепленным генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невозможны экспериментальные браки. Поэтому для изучения групп сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогический, основанный на анализе родословных. |