Главная страница

Теория вероятностей методичка. Министерство образования Российской Федерации Казанский государственный технический университет им. А. Н. Туполева Теория вероятностей (Учебное пособие)


Скачать 3.28 Mb.
НазваниеМинистерство образования Российской Федерации Казанский государственный технический университет им. А. Н. Туполева Теория вероятностей (Учебное пособие)
АнкорТеория вероятностей методичка.doc
Дата23.04.2017
Размер3.28 Mb.
Формат файлаdoc
Имя файлаТеория вероятностей методичка.doc
ТипРеферат
#1387
страница17 из 23
1   ...   13   14   15   16   17   18   19   20   ...   23

Занятие 6. Формула Бейеса.

16.1. Краткая теоретическая часть


Получим важные формулы Бейеса или, как иногда говорят, формулы вероятности гипотез. Требуется найти вероятность события Ai, если известно, что В произошло. Согласно теореме умножения имеем:

(6.1)Из соотношения (6.1) получаем

(6.2)Используя формулу полной вероятности (5.1), находим:

(6.3)

Полученные формулы (6.3) носят название формулБейеса. Общая схема применения этих формул к решению практических задач такова. Пусть событие В может протекать в различных условиях, относительно характера которых может быть сделано n гипотез: . По тем или иным причинам нам известны вероятности этих гипотез до испытания (априорные вероятности гипотез). Известно также, что гипотеза сообщает событию вероятность . Произведен опыт, в котором событие В наступило. Это должно вызвать переоценку вероятностей гипотез ; формулы Бейеса количественно решают этот вопрос.

Вероятности называются апостериорнымивероятностями события .

26.2.Тест


  1. При решении каких задач следует применить формулу Бейеса?

а) Найти вероятность события В, которое зависит от гипотез

б) Найти вероятность справедливости гипотезы при условии, что связанное с ней событие В произошло

в) Найти апостериорную вероятность гипотезы при условии, что событие В, связанное с ней, имело место

г) Найти априорную вероятность гипотезы при условии, что событие В, связанное с ней, имело место

д) Найти вероятность справедливости гипотезы в проводимом опыте


  1. Какие условия должны накладываться на событие В и гипотезы ?

а) Гипотезы представляют собой полную группу несовместных событий

б) Гипотезы представляют собой полную группу равновозможных событий

в) Событие В может протекать в различных условиях, относительно характера которых может быть сделано n гипотез

г) Событие В может протекать в различных условиях, относительно характера которых не может быть сделана ни одна из n гипотез


  1. Какой вид имеет формула Бейеса?

а)

б)

в)


  1. Как называются вероятности ?

а) Априорные вероятности события

б) Апостериорные вероятности события

36.3. Решение типовых задач


Пример 6.1. Телеграфное сообщение состоит из сигналов «точка» и «тире». Статистические свойства помех таковы, что искажаются в среднем 2/5 сообщений «точка» и 1/3 сообщений «тире». Известно, что среди передаваемых сигналов «точка» и «тире» встречаются в отношении 5:3.

Определить вероятность того, что принят передаваемый сигнал, если:

а) принят сигнал «точка»;

б) принят сигнал «тире».
Решение.

Пусть событие А—принят сигнал «точка», а событие В — принят сигнал «тире».

Можно сделать две гипотезы: Н1 — передан сигнал «точка», Н2 — передан сигнал «тире».

По условию Р(Н1):Р(Н2) = 5:3.

Кроме того, P(Н1) + P(Н2) = l.

Поэтому P(Н1) = , P(Н2) = .

Известно, что

Вероятности событий A и В находим по формуле полной вероятности:

Искомые вероятности будут:

Пример 6.2. Имеется две партии деталей, причем известно, что в одной партии все детали удовлетворяют техническим условиям, а в другой партии 1/4 деталей недоброкачественные. Деталь, взятая из наудачу выбранной партии, оказалась доброкачественной. Определить вероятность того, что вторая деталь из этой же партии окажется недоброкачественной, если первая деталь после проверки возвращена в партию.
Решение.

Введем событие А, состоящее в том, что первая деталь доброкачественная.

Гипотезы:

H1 — взята партия с недоброкачественными деталями,

H2 — взята партия доброкачественных деталей.

По условию задачи

Р(H1) = Р(H2) = ,

Р (A|H1) = ,

Р (A|H2) = 1.

Поэтому по формуле полной вероятности вероятность события А будет

.

После первого испытания вероятность того, что партия содержит недоброкачественные детали, равна

Вероятность того, что партия содержит только доброкачественные детали,

Пусть событие В состоит в том, что при втором испытании деталь оказалась недоброкачественной. Вероятность данного события также находится по формуле полной вероятности.

Если и — вероятности гипотез H1 и H2 после испытания, то согласно предыдущим вычислениям

, .

Кроме того,

,

.

Поэтому искомая вероятность


46.4. Задачи для самостоятельной работы


6.1. Имеется десять одинаковых урн, из которых в девяти находятся по два черных и по два белых шара, а в одной— пять белых и один черный шар. Из урны, взятой наудачу, извлечен белый шар. Какова вероятность, что шар извлечен из урны, содержащей пять белых шаров?

(Ответ: p = )
6.2. Известно, что 96°/о выпускаемой продукции удовлетворяют стандарту. Упрощенная схема контроля признает пригодной стандартную продукцию с вероятностью 0,98 и нестандартную — с вероятностью 0,05. Определить вероятность того, что изделие, прошедшее упрощенный контроль, удовлетворяет стандарту.

(Ответ: p = 0,998)
6.3. Из партии в пять изделий наудачу взято одно изделие, оказавшееся бракованным. Количество бракованных изделий равновозможно любое. Какое предположение о количестве бракованных изделий наиболее вероятно?

(Ответ: Пять бракованных изделий )
6.4. Игрок D играет с неизвестным противником на следующих условиях: ничейный исход исключен; первый ход делает противник; в случае его проигрыша делает ход D, выигрыш которого означает выигрыш игры, а при проигрыше игра повторяется второй раз на тех же условиях. Из двух равновозможных противников В имеет вероятность выиграть первым ходом 0,4, а вторым — 0,3; С имеет вероятность выиграть первым ходом 0,8, а вторым ходом 0,6. Для D вероятность выиграть первым ходом равна 0,3 и не зависит от противника, а для второго хода равна 0,5 при игре с В и 0,7 при игре с C. Игру выиграл D.

Какова вероятность:

а) что противником был В;

б) что противником был С?

(Ответ: а) p =0,59; б) p = 0,41)
6.5. Из 18 стрелков 5 попадают в мишень с вероятностью 0,8; 7 — с вероятностью 0,7; 4 — с вероятностью 0,6 и 2 — с вероятностью 0,5. Наудачу выбранный стрелок произвел выстрел, но в мишень не попал. К какой из групп вероятнее всего принадлежал этот стрелок?

(Ответ:Ко второй группе)
6.6. Вероятности попадания при каждом выстреле для трех стрелков равны соответственно. При одновременном выстреле всех трех стрелков имелось два попадания. Определить вероятность того, что промахнулся третий стрелок.

(Ответ: p = )
6.7. Трое охотников одновременно выстрелили по вепрю, который был убит одной пулей. Определить вероятности того, что вепрь убит первым, вторым или третьим охотником, если вероятности попадания для них равны соответственно 0,2; 0,4; 0,6.

(Ответ: = 0,103; = 0,277; = 0,620)
6.8. Два стрелка поочередно стреляют в мишень. Вероятности попадания первыми выстрелами для них равны соответственно 0,4 и 0,5, а вероятности попадания при последующих выстрелах для каждого увеличиваются на 0,05. Какова вероятность, что первым произвел выстрел первый стрелок, если при пятом выстреле произошло попадание в мишень?

(Ответ: p =)
6.9. Произведено три независимых испытания, в каждом из которых событие A происходит с вероятностью 0,2. Вероятность появления другого события В зависит от числа появлений события A: при однократном появлении события A эта вероятность равна 0,1, при двукратном появлении равна 0,3, при трехкратном появлении равна 0,7; если событие A не имело места ни разу, то событие В невозможно. Определить наивероятнейшее число появлений события A, если событие В имело место.

(Ответ: Одно появление)
6.10. Получена партия из восьми изделий одного образца. По данным проверки половины партии, три изделия оказались технически исправными, а одно бракованным. Какова вероятность, что при проверке трех последующих изделий одно из них окажется исправным, а два бракованными, если любое количество бракованных изделий в данной партии равновозможно?

(Ответ: p =).
1   ...   13   14   15   16   17   18   19   20   ...   23


написать администратору сайта