электротехника лекция. Ннноу экономикоправовой колледж
Скачать 1.64 Mb.
|
Универсальные диоды служат для выпрямления токов в широком диапазоне частот (до нескольких сотен мегагерц). Параметры этих диодов те же, что и у выпрямительных, только вводятся еще дополнительные: максимальная рабочая частота (мГц) и емкость диода (пФ). Импульсные диоды предназначены для преобразования импульсного сигнала, применяются в быстродействующих импульсных схемах. Требования, предъявляемые к этим диодам, связаны с обеспечением быстрой реакции прибора на импульсный характер подводимого напряжения - малым временем перехода диода из закрытого состояния в открытое и обратно. Стабилитроны - это полупроводниковые диоды, падение напряжения на которых мало зависит от протекающего тока. Служат для стабилизации напряжения. Варикапы - принцип действия основан на свойстве p-n-перехода изменять значение барьерной емкости при изменении на нем величины обратного напряжения. Применяются в качестве конденсаторов переменной емкости, управляемых напряжением. В схемах варикапы включаются в обратном направлении. Светодиоды - это полупроводниковые диоды, принцип действия которых основан на излучении p-n-переходом света при прохождении через него прямого тока. Фотодиоды – обратный ток зависит от освещенности p-n-перехода. Диоды Шоттки – основаны на переходе металл-полупроводник, за счет чего обладают значительно более высоким быстродействием, нежели обычные диоды. Рисунок 2 – Условно-графическое обозначение диоды Транзисторы Транзистор - это полупроводниковый прибор, предназначенный для усиления, генерирования и преобразования электрических сигналов, а также коммутации электрических цепей. Отличительной особенностью транзистора является способность усиливать напряжение и ток - действующие на входе транзистора напряжения и токи приводят к появлению на его выходе напряжений и токов значительно большей величины. С распространением цифровой электроники и импульсных схем основным свойством транзистора является его способность находиться в открытом и закрытом состояниях под действием управляющего сигнала. Свое название транзистор получил от сокращения двух английских слов tran(sfer) (re)sistor - управляемый резистор. Это название неслучайно, так как под действием приложенного к транзистору входного напряжения сопротивление между его выходными зажимами может регулироваться в очень широких пределах. Транзистор позволяет регулировать ток в цепи от нуля до максимального значения. Классификация транзисторов: - по принципу действия: полевые (униполярные), биполярные, комбинированные. - по значению рассеиваемой мощности: малой, средней и большой. - по значению предельной частоты: низко-, средне-, высоко- и сверхвысокочастотные. - по значению рабочего напряжения: низко- и высоковольтные. - по функциональному назначению: универсальные, усилительные, ключевые и др. - по конструктивному исполнению: бескорпусные и в корпусном исполнении, с жесткими и гибкими выводами. В зависимости от выполняемых функций транзисторы могут работать в трех режимах: 1) Активный режим - используется для усиления электрических сигналов в аналоговых устройствах. Сопротивление транзистора изменяется от нуля до максимального значения - говорят транзистор «приоткрывается» или «подзакрывается». 2) Режим насыщения - сопротивление транзистора стремится к нулю. При этом транзистор эквивалентен замкнутому контакту реле. 3) Режим отсечки - транзистор закрыт и обладает высоким сопротивлением, т.е. он эквивалентен разомкнутому контакту реле. Режимы насыщения и отсечки используются в цифровых, импульсных и коммутационных схемах. Биполярный транзистор - это полупроводниковый прибор с двумя p-n-переходами и тремя выводами, обеспечивающей усиление мощности электрических сигналов. В биполярных транзисторах ток обусловлен движением носителей заряда двух типов: электронов и дырок, что и определяет их название. На схемах транзисторы допускается изображать, как в окружности, так и без неё (рис. 3). Стрелка указывает направление протекания тока в транзисторе. Рисунок 3 - Условно - графическое обозначения транзисторов n-p-n (а) и p-n-p (б) Основой транзистора является пластина полупроводника, в которой сформированы три участка с чередующимся типом проводимости - электронным и дырочным. В зависимости от чередования слоев различают два вида структуры транзисторов: n-p-n (рис. 3, а) и p-n-p (рис. 3, б). Эмиттер (Э) - слой, являющийся источником носителей заряда (электронов или дырок) и создающий ток прибора; Коллектор (К) – слой, принимающий носители заряда, поступающие от эмиттера; База (Б) - средний слой, управляющий током транзистора. При включении транзистора в электрическую цепь один из его электродов является входным (включается источник входного переменного сигнала), другой - выходным (включается нагрузка), третий электрод - общий относительно входа и выхода. В большинстве случаев используется схема с общим эмиттером (рис 4). На базу подается напряжение не более 1 В, на коллектор более 1 В, например +5 В, +12 В, +24 В и т.п. Рисунок 4 – Схемы включения биполярного транзистора с общим эмиттером Ток коллектора возникает только при протекании тока базы Iб (определяется Uбэ). Чем больше Iб, тем больше Iк. Iб измеряется в единицах мА, а ток коллектора - в десятках и сотнях мА, т.е. IбIк. Поэтому при подаче на базу переменного сигнала малой амплитуды, малый Iб будет изменяться, и пропорционально ему будет изменяться большой Iк. При включении в цепь коллектора сопротивления нагрузки, на нем будет выделяться сигнал, повторяющий по форме входной, но большей амплитуды, т.е. усиленный сигнал. К числу предельно допустимых параметров транзисторов в первую очередь относятся: максимально допустимая мощность, рассеиваемая на коллекторе Рк.mах, напряжение между коллектором и эмиттером Uкэ.mах, ток коллектора Iк.mах. Для повышения предельных параметров выпускаются транзисторные сборки, которые могут насчитывать до нескольких сотен параллельно соединенных транзисторов, заключенных в один корпус. Биполярные транзисторы ныне используются все реже и реже, особенно в импульсной силовой технике. Их место занимают полевые транзисторы MOSFET и комбинированные транзисторы IGBT, имеющие в этой области электроники несомненные преимущества. В полевых транзисторах ток определяется движением носителей только одного знака (электронами или дырками). В отличии от биполярных, ток транзистора управляется электрическим полем, которое изменяет сечение проводящего канала. Так как нет протекания тока во входной цепи, то и потребляемая мощность из этой цепи практически равна нулю, что несомненно является достоинством полевого транзистора. Конструктивно транзистор состоит из проводящего канала n- или p-типа, на концах которого находятся области: исток, испускающий носители заряда и сток, принимающий носители. Электрод, служащий для регулирования поперечного сечения канала, называют затвором. Полевой транзистор - это полупроводниковый прибор, регулирующий ток в цепи за счет изменения сечения проводящего канала. Различают полевые транзисторы с затвором в виде p-n перехода и с изолированным затвором. У полевых транзисторов с изолированным затвором между полупроводниковым каналом и металлическим затвором расположен изолирующий слой из диэлектрика - МДП-транзисторы (металл - диэлектрик - полупроводник), частный случай - окисел кремния - МОП-транзисторы. МДП-транзистор со встроенным каналом имеет начальную проводимость, которая при отсутствии входного сигнала (Uзи = 0) составляет примерно половине от максимальной. В МДП-транзисторы с индуцированным каналом при напряжении Uзи=0 выходной ток отсутствует, Iс =0, так как проводящего канала изначально нет. МДП-транзисторы с индуцированным каналом называют также MOSFET транзисторы. Используются в основном в качестве ключевых элементов, например в импульсных источниках питания. Ключевые элементы на МДП-транзисторах имеют ряд преимуществ: цепь сигнала гальванически не связана с источником управляющего воздействия, цепь управления не потребляет тока, обладают двухсторонней проводимостью. Полевые транзисторы, в отличие от биполярных, не боятся перегрева. Тиристоры Тиристор - это полупроводниковый прибор, работающие в двух устойчивых состояниях – низкой проводимости (тиристор закрыт) и высокой проводимости (тиристор открыт). Конструктивно тиристор имеет три или более p-n – переходов и три вывода. Кроме анода и катода, в конструкции тиристора предусмотрен третий вывод (электрод), который называется управляющим. Тиристор предназначен для бесконтактной коммутации (включения и выключения) электрических цепей. Характеризуются высоким быстродействием и способностью коммутировать токи весьма значительной величины (до 1000 А). Постепенно вытесняются коммутационными транзисторами. Рисунок 5 - Условно - графическое обозначение тиристоров Динисторы (двухэлектродные) - как и обычные выпрямительные диоды имеют анод и катод. С увеличением прямого напряжения при определенном значении Ua = Uвкл динистор открывается. Тиристоры (тринисторы - трехэлектродные) - имеют дополнительный управляющий электрод; Uвкл изменяется током управления, протекающим через управляющий электрод. Для перевода тиристора в закрытое состояние необходимо подать напряжение обратное (- на анод, + на катод) или уменьшить прямой ток ниже значения, называемого током удержания Iудер. Запираемый тиристор – может быть переведен в закрытое состояние подачей управляющего импульса обратной полярности. Тиристоры: принцип действия, конструкции, типы и способы включения Симисторы (симметричные тиристоры) - проводят ток в обоих направлениях. Тиристоры применяются в качестве бесконтактных переключателей и управляемых выпрямителей в устройствах автоматики и преобразователях электрического тока. В цепях переменного и импульсных токов можно изменять время открытого состояния тиристора, а значит и время протекания тока через нагрузку. Это позволяет регулировать мощность, выделяемую в нагрузке. Основные источники: 1. Бутырин П.А. Электротехника: Учебник для нач. проф. образования. - М.: Издательский центр «Академия», 2007. – 272 с. 2. Полещук В.И. Задачник по электротехнике и электронике: Учебник для студентов сред. профессиональных учебных заведений. – М.: Издательский центр «Академия», 2010. – 256 с. 3. Синдеев Ю.Г. Электротехника с основами электроники: учебное пособие для учащихся профессиональных училищ, лицеев и колледжей. – Ростов н/Д: Феникс, 2006. – 416 с. Дополнительные источники: 1. Березкина Т.Ф., Гусев Н.Г, Масленников В.В. Задачник по общей электротехники с основами электроники. – М.: Высшая школа, 2003. 2. Данилов И.А., Иванов П.М. Дидактический материал по общей электротехнике с основами электроники. – М.: Мастерство, 2000. – 319 с. 3. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники. – М.: Мастерство, 2001. – 754 с. 4. Трансформаторы, Серебряков А.С., 2013. 5. Лоторейчук Е.А. Теоретические основы электротехники: Учебник. - М.: ФОРУМ-ИНФА-М, 2004. – 316 с. Интернет-ресурсы: 1. http://www.twirpx.com 2. http://mat.net.ua/mat/biblioteka-fizika/Savelyev-fizika-t2.pdf 3. http://elib.oreluniver.ru/media/attach/note/2012/osnovielektrotech_elektroniki.pdf 4. https://booksee.org/book/473680 5. https://www.studmed.ru/science/radioelektronika/components/rezistory-i-kondensatory |