Главная страница
Навигация по странице:

  • Статические и статокинетические рефлексы

  • Нисходящие влияния

  • Восходящие влияния

  • Ответы Физиология. Нормальная физиология как научная основа медицины, её связь с другими науками


    Скачать 1.62 Mb.
    НазваниеНормальная физиология как научная основа медицины, её связь с другими науками
    АнкорОтветы Физиология.doc
    Дата04.03.2017
    Размер1.62 Mb.
    Формат файлаdoc
    Имя файлаОтветы Физиология.doc
    ТипДокументы
    #3353
    страница23 из 28
    1   ...   20   21   22   23   24   25   26   27   28

    Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

    Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.

    Мозжечковый контроль двигательной активности. Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разгибанию и наоборот.

    Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. Например, делая шаг при ходьбе, человек заносит вперед ногу, одновременно центр тяжести туловища переносится вперед при участии мышц спины. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

    1) астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;

    2) астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение и т. д.;

    3) дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;

    4) тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

    5) дисметрия (dismetria — нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

    6) атаксия (ataksia, от греч. а — отрицание, taksia — порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в определенной последовательности. Проявлениями атаксии являются так же адиадохокинез, асинергия, пьяная-шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз—вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Врожденных двигательных актов у человека не так уж много (например, сосание), большинство же движений он выучивает в течение жизни и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигают цели.

    Данные о том, что повреждение мозжечка ведет к расстройствам движений, которые были приобретены человеком в результате обучения, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а следовательно, мозжечок принимает участие в организации процессов высшей нервной деятельности;

    7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (скандированная речь).

    При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Регуляция мышечного тонуса с помощью мозжечка происходит следующим образом: проприоцептивные сигналы о тонусе мышц поступают в область червя и клочково-узелковую долю, отсюда — в ядро шатра, далее — к ядру преддверия и РФ продолговатого и среднего мозга и, наконец, по ретикулярно- и вестибулоспинальным путям к нейронам передних рогов спинного мозга, иннервирующих мышцы, от которых поступили сигналы. Следовательно, регуляция мышечного тонуса реализуется по принципу обратной связи.

    Следует отметить, что характер влияния на тонус мышц определяется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышц-разгибателей снижается, при низкой (2—10 имп/с) — увеличивается.

    Промежуточная область коры мозжечка получает информацию по спинальным трактам от двигательной области коры большого мозга (прецентральной извилины), по коллатералям пирамидного пути, идущего в спинной мозг. Коллатерали заходят в мост, а оттуда — в кору мозжечка. Следовательно, за счет коллатералей мозжечок получает информацию о готовящемся произвольном движении, и возможность участвовать в обеспечении тонуса мышц, необходимого для реализации этого движения.

    Латеральная кора мозжечка получает информацию из двигательной области коры большого мозга. В свою очередь латеральная кора посылает информацию в зубчатое ядро мозжечка, отсюда по мозжечково-кортикальному пути в сенсомоторную область коры большого мозга (постцентральная извилина), а через мозжечково-рубральный путь к красному ядру и от него по руброспинальному пути к передним рогам спинного мозга. Параллельно сигналы по пирамидному пути идут к тем же передним рогам спинного мозга.

    Таким образом, мозжечок, получив информацию о готовящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.

    Изменение тонуса мышц после повреждения мозжечка обусловлено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бесконтрольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей

    Статические и статокинетические рефлексы

    Равновесие поддерживается рефлексами без участия сознания. Хотя сознательный анализ восприятия пространства возможен, регуляторные задачи не могут быть эффективно решены без участия врожденных рефлексов. Так, нельзя научиться "слепому" полету на самолете (т. е. в тумане) на основе сознательных пространственных ощущений; нужную информацию должны давать приборы. Рефлексы, вызываемые вестибулярными органами, можно разделить на две группы: так называемые статические и статокинетические рефлексы. Мы коснемся здесь нескольких особенно существенных моментов. Макулярные органы осуществляют статические рефлексы, которые поддерживают равновесие при разнообразных стоячих и наклонных положениях тела. Компенсаторное вращение глаз, особенно хорошо заметное у кошек, но возникающее и у людей, представляет собой статический рефлекс. Благодаря ему на сетчатке сохраняется изображение горизонтальных и вертикальных линий. Нет нужды напоминать, что в этом рефлексе участвуют шейные рецепторы. Статокинетические рефлексы происходят во время движений. Один из них -это поворот, который происходит в свободном падении. Так, кошка всегда падает на лапы независимо от того, в каком положении она начала падать. Статокинетические рефлексы вызываются как макулярными органами, так и полукружными каналами. Другим статокинетическим рефлексом является "эффект лифта" на свободное падение, при котором усиливается тонус разгибателей, когда животное движется вниз.

    Среди статокинетических рефлексов особенно выделяется вестибулярный нистагм. Он состоит из последовательных движений глаз, вызываемых вестибулярной активностью, когда глаза движутся в сторону, противоположную вращению тела, благодаря чему направление взора остается неизменным. Это компенсаторное движение глаз, разумеется, эффективно только в определенных границах вращения. До того как глаза достигнут предела своего латерального движения, происходит их быстрое движение в сторону вращения -они устремляются вперед и фиксируются на новой точке. За этой быстрой фазой следует новое медленное движение, которое снова компенсирует вращение.

    Вращение головы или туловища вокруг вертикальной оси практически действует только на горизонтальные полукружные каналы. При этом отклонение купул в обоих горизонтальных каналах вызывает горизонтальный нистагм. Направление двух (быстрого и медленного) компонентов нистагма зависит от направления вращения (и, следовательно, от наклона купулы). При клиническом описании направление нистагма условились. Считать по быстрой фазе. Иными словами, при "правом нистагме" быстрая фаза направлена вправо. Такая терминология совпадает с терминами, принятыми для оптокинетического нистагма .

    При пассивном вращении первоначальный эффект состоит в стимуляции вестибулярного аппарата, а также относительном смещении видимого мира. Каждый из этих двух эффектов сам по себе вызывает нистагм (вестибулярный и оптокинетический). Они дополняют друг друга.

    Вопрос № 7

    Ретикулярная формация ствола мозга, особенность нейронной организации, её связи с другими отделами ЦНС. Участие ретикулярной формации в поддержании и перераспределении мышечного тонуса. (Р. Гранит)

    Ретикулярная формация (formatio reticularis; РФ) мозга представлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально связана с РФ спинного мозга. В связи с этим целесообразно ее рассмотреть как единую систему. Сетевые связи нейронов РФ между собой позволили Дейтерсу назвать ее ретикулярной формацией мозга.

    Активность нейронов РФ различна и в принципе сходна с активностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической активностью, не зависящей от приходящих сигналов.

    Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, образующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны нейронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Аксоны нейронов РФ, идущие в кору большого мозга, заканчиваются здесь на дендритах I и II слоев.

    В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. На нейроны моста приходят сигналы преимущественно от соматосенсорных систем. Сигналы от зрительной и слуховой сенсорных систем в основном приходят на нейроны РФ среднего мозга.

    РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздражении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга.

    В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное дискомфортное, не всегда четко локализуемое, болевое ощущение «тупой боли».

    Повторение любого вида стимуляции приводит к снижению импульсной активности нейронов РФ, т. е. процессы адаптации (привыкания) присущи и нейронам РФ ствола мозга.

    РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зрительного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.

    Раздражение латеральной области Р. ф. продолговатого мозга по периферии области, оказывающей тормозящие влияния, сопровождается облегчающим действием на моторную активность спинного мозга. Область Р. ф., оказывающая облегчающие влияния на спинной мозг, не ограничивается продолговатым мозгом, а распространяется кпереди, захватывая область варолиева моста и среднего мозга. Р. ф. может воздействовать на различные образования спинного мозга, например на альфа-мотонейроны, иннервирующие основные (экстрафузальные) волокна мышц, участвующих в произвольных движениях. Увеличение латентных периодов ответов мотонейронов при раздражении тормозящих отделов Р. ф. позволяет предполагать, что тормозящие влияния ретикулярных структур на двигательные реакции спинного мозга осуществляются с помощью вставочных нейронов, возможно клеток Реншоу. Механизм влияния Р. ф. на мышечный тонус раскрыт шведским нейрофизиологом Р. Гранитом, показавшим, что Р. ф. влияет также на активность гамма-мотонейронов, аксоны которых идут к так называемым интрафузальным мышечным волокнам, осуществляя важную роль в регуляции позы и фазных движений организма.

    Ретикулярная формация осуществляется взаимодействие поступающих в неё как восходящих - афферентных, так и нисходящих - эфферентных импульсов. Возможна также циркуляция импульсов по замкнутым нейронным цепям. Т. о., существует постоянный уровень возбуждения нейронов Ретикулярная формация, вследствие чего обеспечиваются тонус и определённая степень готовности к деятельности различных отделов центральной нервной системы. Степень возбуждения Ретикулярная формация регулируется корой больших полушарий головного мозга.

    Вопрос № 8

    Ретикулярная формация ствола мозга, нисходящие влияния ретикулярной формации на рефлекторную деятельность спинного мозга. Восходящие влияния ретикулярной формации.

    Ретикулярная формация

    сетевидное образование, совокупность нервных структур, расположенных в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх). Нейроны, составляющие Р. ф., разнообразны по величине, строению и длине Аксонов; их волокна густо переплетаются. Термин «Р. ф.», введённый немецким учёным О. Дейтерсом, отражает лишь морфологические её особенности. Р. ф. морфологически и функционально связана со спинным мозгом, мозжечком (См. Мозжечок), лимбической системой (См. Лимбическая система) и корой больших полушарий головного мозга. В области Р. ф. осуществляется взаимодействие поступающих в неё как восходящих — афферентных, так и нисходящих — эфферентных импульсов. Возможна также циркуляция импульсов по замкнутым нейронным цепям. Т. о., существует постоянный уровень возбуждения нейронов Р. ф., вследствие чего обеспечиваются тонус и определённая степень готовности к деятельности различных отделов центральной нервной системы. Степень возбуждения Р. ф. регулируется корой больших полушарий головного мозга (См. Кора больших полушарий головного мозга).

    Нисходящие влияния. В Р. ф. различают области, которые оказывают тормозящие и облегчающие влияния на двигательные реакции спинного мозга (См. Спинной мозг) (рис. 1). Зависимость между раздражением различных областей ствола мозга и спинномозговыми рефлексами впервые отметил в 1862 И. М. Сеченов. В 1944—46 американский нейрофизиолог Х. Мэгоун с сотрудниками показали, что раздражение различных участков Р. ф. продолговатого мозга оказывает облегчающее или тормозящее влияние на двигательные реакции спинного мозга. Электрическое раздражение медиальной части Р. ф. продолговатого мозга у наркотизированных и децеребрированных кошек и обезьян сопровождается полным прекращением движений, вызываемых как рефлекторно, так и стимуляцией двигательных участков коры мозга. Все тормозные эффекты — двусторонние, но на стороне раздражения такой эффект нередко наблюдается при более низком пороге раздражения. Некоторые проявления тормозящих влияний Р. ф. продолговатого мозга соответствуют картине центрального торможения, описанного Сеченовым (см. Сеченовское торможение). Раздражение латеральной области Р. ф. продолговатого мозга по периферии области, оказывающей тормозящие влияния, сопровождается облегчающим действием на моторную активность спинного мозга. Область Р. ф., оказывающая облегчающие влияния на спинной мозг, не ограничивается продолговатым мозгом, а распространяется кпереди, захватывая область варолиева моста и среднего мозга. Р. ф. может воздействовать на различные образования спинного мозга, например на альфа-мотонейроны, иннервирующие основные (экстрафузальные) волокна мышц, участвующих в произвольных движениях. Увеличение латентных периодов ответов мотонейронов при раздражении тормозящих отделов Р. ф. позволяет предполагать, что тормозящие влияния ретикулярных структур на двигательные реакции спинного мозга осуществляются с помощью вставочных нейронов, возможно клеток Реншоу. Механизм влияния Р. ф. на мышечный тонус раскрыт шведским нейрофизиологом Р. Гранитом, показавшим, что Р. ф. влияет также на активность гамма-мотонейронов, аксоны которых идут к так называемым интрафузальным мышечным волокнам, осуществляя важную роль в регуляции позы и фазных движений организма.

    Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сеченовым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки возникают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся.

    Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках про­долговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.

    Восходящие влияния. Различные отделы Р. ф. (от промежуточного до продолговатого мозга) оказывают возбуждающие генерализованные влияния на кору мозга, т. е. вовлекают в процесс возбуждения все области коры больших полушарий (рис. 2). В 1949 итальянский физиолог Дж. Моруцци и Мэгоун, исследуя биоэлектрическую активность мозга, установили, что раздражение Р. ф. ствола мозга изменяет медленные синхронные высоковольтные колебания, характерные для сна, на низкоамплитудную высокочастотную активность, характерную для бодрствования. Изменение электрической активности коры мозга сопровождается у животных внешними проявлениями пробуждения. Р. ф. тесно связана анатомически с классическими проводящими путями, и возбуждение её осуществляется с помощью экстеро- и интероцептивных афферентных (чувствительных) систем. На этом основании ряд авторов относит Р. ф. к неспецифической афферентной системе мозга. Однако применение различных фармакологических веществ при изучении функции Р. ф., открытие избирательного действия химических препаратов на реакции, осуществляемые с участием Р. ф., позволили П. К. Анохину сформулировать положение о специфичности восходящих влияний Р. ф. на кору мозга. Активирующие влияния Р. ф. всегда имеют определённое биологическое значение и характеризуются избирательной чувствительностью к различным фармакологическим веществам (Анохин, 1959, 1968). Введённые в организм наркотические средства вызывают торможение нейронов Р. ф., блокируя тем самым её восходящие активирующие влияния на кору мозга.

    Важная роль в поддержании активности Р. ф., чувствительных к различным циркулирующим в крови химическим веществам, принадлежит гуморальным факторам: катехоламинам, двуокиси углерода, холинэргическим веществам и т. д. Это обеспечивает включение Р. ф. в регулирование некоторых вегетативных функций. Кора больших полушарий, испытывающая тонические активирующие влияния со стороны Р. ф., может активно изменять функциональное состояние ретикулярных образований (изменять скорость проведения возбуждения в ней, влиять на функционирование отдельных нейронов), т. е. контролировать, по выражению И. П. Павлова, «слепую силу» подкорки.

    Восходящие влияния РФ на кору большого мозга повышают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на функциональное состояние всех сенсорных областей мозга, следовательно, она имеет значение в интеграции сенсорной информации от разных анализаторов.

    РФ имеет прямое отношение к регуляции цикла бодрствование—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Моруцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.

    Возбуждение РФ продолговатого мозга или моста вызывает синхронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение.

    Возбуждение РФ среднего мозга вызывает противоположный эффект пробуждения: десинхронизацию электрической активности коры, появление быстрых низкоамплитудных β-подобных ритмов в электроэнцефалограмме.

    Г. Бремер (1935) показал, что если перерезать мозг между передними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализирующего состояния мозга возможно при сохранении связи с передним мозгом

    Реакция активации коры большого мозга наблюдается при раздражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к возникновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ

    РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.
    1   ...   20   21   22   23   24   25   26   27   28


    написать администратору сайта