Ответы Физиология. Нормальная физиология как научная основа медицины, её связь с другими науками
Скачать 1.62 Mb.
|
Резус-иммунизацией называется появление у беременной антител в ответ на внедрение фетальных эритроцитарных антигенов группы резус. Антитела, проникая через плаценту, разрушают эритроциты плода, вызывая анемию, в результате которой появляется компенсаторное экстрамедуллярное кроветворение. Оно развивается преимущественно в печени плода, что приводит к портальной гипертензии, нарушению функций печени и, далее, к гипопротеинемии, асциту и водянке плода- эритробластозу плода. Резус система состоит из шести Rh-генов, три из которых являются доминантными (C, D, E), а три рецессивными (c, d, e). Наибольшее значение имеет ген D, который передает индивидууму свойство Rh положительности. Приблизительно 1,5% от всех беременностей у резус-отрицательных женщин осложняется эритроцитарной сенсибилизацией. Эта частота существенно снижается при широком использовании анти-Rhо(D) иммуноглобулина. Национальные и расовые особенности. Rh-отрицательными являются до 30% женщин-басков (народность, проживающая в Испании и Франции), 15% белых женщин, 10% испанок Латинской Америки, 6-8 % негров и 2% представительниц жёлтой расы. Механизм изоиммунизации. Первичным ответом матери на воздействие инородного антигена является выработка IgM. Последующее воздействие (реакция в анамнезе) приводит к продукции материнского IgG, который является единственным из иммуноглобулинов, способных проникать через плаценту, благодаря малому размеру. Повторное попадание в кровоток матери даже небольшого количества эритроцитов плода приводит к быстрой и массивной выработке антирезусных Ig G. В половине случаев для развития первичного иммунного ответа достаточно попадания 50-75 мл. эритроцитов, а для вторичного – 0,1 мл. Точное время между попаданием крови плода к матери и началом первичного иммунного ответа неизвестно, однако, как правило, проходит несколько недель (8-9 недель, иногда – вплоть до 6 мес.), прежде чем в сыворотке крови матери появляются поддающиеся определению антирезус-антитела. Этим объясняется возможность профилактического введения анти-Rhо(D) иммуноглобулина (антирезус-глобулина) матери вскоре после родов с целью блокирования иммунного ответа. Даже при введении анти-Rhо(D) иммуноглобулина с запаздыванием до 2-х недель с момента попадания к матери резус- положительных клеток плода, его защитное действие проявляется в 50% случаев. Дородовая изоиммунизация. Во время нормальной беременности эритроциты проникают через плацентарный барьер у 5% беременных в течение 1-го триместра, у 15% - в течение 2-го триместра и у 30% - в конце 3-го триместра. Необходимо добавить, что фето-материнское кровотечение при амниоцентезе во втором и третьем триместрах имеет место у 20% беременных, а при самопроизвольных или искусственных абортах-у 15% женщин. В подавляющем большинстве случаев количество попадающих в кровь матери клеток плода невелико и недостаточно для возникновения первичного иммунного ответа. Частота дородовой первичной изоиммунизации в течение первой резус-несовместимой беременности составляет менее 1%. Изоиммунизация во время родов. Чаще всего изоиммунизация матери является следствием попадания крови плода к матери во время родов, что является скорее правилом, чем исключением. Однако и после родов изоиммунизация развивается лишь у 10-15% Rh(-) матерей, имеющих Rh(+) мужей. Такой низкий показатель изоиммунизации связан с несколькими факторами, влияющими на возможность развития первичной изоиммунизации: Объем поступающей крови плода. Чем большее число эритроцитов плода поступает в систему кровообращения матери, тем выше вероятность изоиммунизации. Тем не менее изоиммунизация наступает даже при попадании всего 0,25 мл Rh(+) клеток плода. Фетоматеринская трансфузия в объеме более 30 мл может встречаться в 0,5% физиологических родов. Риск иммунизации возрастает вследствие увеличения объема фето-материнской трансфузии при самопроизвольном или искусственном аборте, кровотечениях во время беременности, при ручном отделении и выделении плаценты, кесаревом сечении (при амниоцентезе, если повреждается плацента). Несовместимость между матерью и плодом по системе АВО снижает риск изоиммунизации. Если мать имеет группу крови 0, а отец А, В или АВ, то частота изоиммунизации снижается на 50-75%, что связано с разрушением эритроцитов плода материнскими анти-А или анти-В антителами до того, как появится иммунный ответ. Примерно 30-35% Rh(-) женщин не могут быть иммунизированы Rh(+) антигеном, что, вероятно, находится под генетическим контролем.
Белки плазмы крови выполняют разнообразные функции: 1) коллоидно-осмотический и водный гомеостаз; 2) обеспечение агрегатного состояния крови; 3) кислотно-основной гомеостаз; 4) иммунный гомеостаз; 5) транспортная функция; б) питательная функция; 7) участие в свертывании крови. Альбумины составляют около 60% всех белков плазмы. Благодаря относительно небольшой молекулярной массе (70000) и высокой концентрации альбумины создают 80% онкотического давления. Альбумины осуществляют питательную функцию, являются резервом аминокислот для синтеза белков. Их транспортная функция заключается в переносе холестерина, жирных кислот, билирубина, солей желчных кислот, солей тяжелых металлов, лекарственных препаратов (антибиотиков, сульфаниламидов). Альбумины синтезируются в печени. Глобулины подразделяются на несколько фракций: a -, b - и g - глобулины. a - Глобулины включают гликопротеины, т.е. белки, простетической группой которых являются углеводы. Около 60% всей глюкозы плазмы циркулирует в составе гликопротеинов. Эта группа белков транспортирует гормоны, витамины, микроэлементы, липиды. К a - глобулинам относятся эритропоэтин, плазминоген, протромбин. b - Глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов. К этой фракции относится белок трансферрин, обеспечивающий транспорт железа, а также многие факторы свертывания крови. g - Глобулины включают в себя различные антитела или иммуноглобулины 5 классов: Jg A, Jg G, Jg М, Jg D и Jg Е, защищающие организм от вирусов и бактерий. К g - глобулинам относятся также a и b – агглютинины крови, определяющие ее групповую принадлежность. Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах. Фибриноген – первый фактор свертывания крови. Под воздействием тромбина переходит в нерастворимую форму – фибрин, обеспечивая образование сгустка крови. Фибриноген образуется в печени. Онкотическое давление. Является частью осмотического и зависит от содержания крупномолекулярных соединений (белков) в растворе. Хотя концентрация белков в плазме довольно велика, общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не превышает 30 мм рт.ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают альбумины), что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме. Онкотическое давление играет важную роль в регуляции водного обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровезамещающие растворы должны содержать в своем составе коллоидные вещества, способные удерживать воду. При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани. Суспензионная устойчивость крови (скорость оседания эритроцитов — СОЭ). Кровь представляет собой суспензию, или взвесь, так как форменные элементы ее находятся в плазме во взвешенном состоянии. Взвесь эритроцитов в плазме поддерживается гидрофильной природой их поверхности, а также тем, что эритроциты (как и другие форменные элементы) несут отрицательный заряд, благодаря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть обусловлено адсорбцией таких положительно заряженных белков, как фибриноген, γ-глобулины, парапротеины и др., то снижается электростатический «распор» между эритроцитами. При этом эритроциты, склеиваясь друг с другом, образуют так называемые монетные столбики. Одновременно положительно заряженные белки выполняют роль межэритроцитарных мостиков. Такие «монетные столбики», застревая в капиллярах, препятствуют нормальному кровоснабжению тканей и органов. Величина СОЭ зависит от возраста и пола. У новорожденных СОЭ равна 1—2 мм/ч, у детей старше 1 года и у мужчин — 6—12 мм/ч, у женщин — 8—15 мм/ч, у пожилых людей обоего пола — 15—20 мм/ч. Наибольшее влияние на величину СОЭ оказывает содержание фибриногена: при увеличении его концентрации более 4 г/л СОЭ повышается. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при воспалительных, инфекционных и онкологических заболеваниях, а также при значительном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком. Величина СОЭ зависит в большей степени от свойств плазмы, чем эритроцитов. Так, если эритроциты мужчины с нормальной СОЭ поместить в плазму беременной женщины, то эритроциты мужчины оседают с такой же скоростью, как и у женщин при беременности.
Концентрация водородных ионов и регуляция рН крови. В норме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а венозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные отклонения рН сопровождаются тяжелейшими последствиями для организма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неминуема смерть. Если же концентрация ионов Н+ уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти. В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате интенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов Н+ возросла в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме постоянство рН сохраняется за счет работы почек и легких, удаляющих из крови СО2, избыток солей, кислот и оснований (щелочей). Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы. Самой мощной является буферная система гемоглобина. На ее долю приходится 75% буферной емкости крови. Эта система включает восстановленный гемоглобин (ННb) и калиевую соль восстановленного гемоглобина (КНb). Буферные свойства системы обусловлены тем, что КНb как соль слабой кислоты отдает ион К+ и присоединяет при этом ион Н+, образуя слабодиссоциированную кислоту: H+ + KHb = K+ + HHb Величина рН крови, притекающей к тканям, благодаря восстановленному гемоглобину, способному связывать СО2 и Н+-ионы, остается постоянной. В этих условиях ННЬ выполняет функции основания. В легких гемоглобин ведет себя как кислота (оксигемоглобин ННbО2 является более сильной кислотой, чем СО2), что предотвращает защелачивание крови. Карбонатная буферная система (H2CO3/NaHCO3) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCO3 диссоциирует на ионы Na+ и НСОз-. Если в кровь поступает кислота более сильная, чем угольная, то происходит обмен ионами Na+ с образованием слабодиссоциированной и легко растворимой угольной кислоты, что предотвращает повышение концентрации ионов Н+ в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на Н2О и СО2. Последний поступает в легкие и выделяется в окружающую среду. Если в кровь поступает основание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaНСОз) и воду, что опять-таки препятствует сдвигу рН в щелочную сторону. Фосфатная буферная система образована натрия дигидрофосфатом (NaH2PO4) и натрия гидрофосфатом (Na2HPO4). Первое соединение ведет себя как слабая кислота, второе — как соль слабой кислоты. Если в кровь попадает более сильная кислота, то она реагирует с Na2HPO4, образуя нейтральную соль, и увеличивает количество слабодиссоциируемого H++NaHPO4-=Na+ + H2PO4- Избыточное количество натрия дигидрофосфата при этом будет удаляться с мочой, благодаря чему соотношение NaH2PO4/Na2HPO4 не изменится. Белки плазмы крови играют роль буфера, так как обладают амфотерными свойствами: в кислой среде ведут себя как основания, а в основной — как кислоты. Важная роль в поддержании постоянства рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт и др., деятельность которых направлена на восстановление исходной величины рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н2РО4- При сдвиге рН крови в щелочную сторону увеличивается выделение почками анионов НРО2- и НСОз-. Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СО2. Буферные системы крови более устойчивы к действию кислот, чем оснований. Основные соли слабых кислот, содержащиеся в крови, образует так называемый щелочной резерв крови. Его величина определяется по тому количеству СО2, которое может быть связано 100 мл крови при напряжении СО2, равному 40 мм рт. ст. При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную сторону. Первый из них носит название ацидоза, второй — алкалоза.
СИСТЕМА ГЕМОСТАЗА Под термином «гемостаз» понимают комплекс реакций, направленных на остановку кровотечения при травме сосудов. Значение системы гемостаза намного сложнее и шире. Факторы гемостаза принимают участие в сохранении жидкого состояния крови, регуляции транскапиллярного обмена, резистентности сосудистой стенки, влияют на интенсивность репаративных процессов и др. Принято различать сосудисто-тромбоцитарный гемостаз и процесс свертывания крови. В первом случае речь идет об остановке кровотечения из мелких сосудов с низким кровяным давлением, диаметр которых не превышает 100 мкм, во втором — о борьбе с кровопотерей при повреждениях артерий и вен. Такое деление носит условный характер, потому что при повреждении как мелких, так и крупных кровеносных сосудов всегда наряду с образованием тромбоцитарной пробки осуществляется свертывание крови. 6.4.1. Сосудисто-тромбоцитарный гемостаз Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба. Условно его разделяют на три стадии: 1) временный (первичный) спазм сосудов; 2) образование тромбоцитарной пробки за счет адгезии (прикрепления к поврежденной поверхности) и агрегации (склеивания между собой) тромбоцитов; 3) ретракция (сокращение и уплотнение) тромбоцитарной пробки. Сразу после травмы наблюдается первичный спазм кровеносных сосудов, благодаря чему кровотечение в первые секунды может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10—15 с. В дальнейшем наступает вторичный спазм, обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов — серотонина, ТхА2, адреналина и др. Повреждение сосудов сопровождается немедленной активацией тромбоцитов, что обусловлено появлением высоких концентраций АДФ (из разрушающихся эритроцитов и травмированных сосудов), а также с обнажением субэндотелия, коллагеновых и фибриллярных структур. В результате «раскрываются» вторичные рецепторы и создаются оптимальные условия для адгезии, агрегации и образования тромбоцитарной пробки. Адгезия обусловлена наличием в плазме и тромбоцитах особого белка — фактора Виллебранда (FW), имеющего три активных центра, два из которых связываются с экспрессированными рецепторами тромбоцитов, а один — с рецепторами субэндотелия и коллагеновых волокон. Таким образом, тромбоцит с помощью FW оказывается «подвешенным» к травмированной поверхности сосуда. Одновременно с адгезией наступает агрегация тромбоцитов, осуществляемая с помощью фибриногена — белка, содержащегося в плазме и тромбоцитах и образующего между ними связующие мостики, что и приводит к появлению тромбоцитарной пробки. Важную роль в адгезии и агрегации играет комплекс белков и полипептидов, получивших наименование «интегрины». Последние служат связующими агентами между отдельными тромбоцитами (при склеивании друг с другом) и структурами поврежденного сосуда. Агрегация тромбоцитов может носить обратимый характер (вслед за агрегацией наступает дезагрегация, т. е. распад агрегатов), что зависит от недостаточной дозы агрегирующего (активирующего) агента. Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически активные соединения — АДФ, адреналин, норадреналин, фактор Р4, ТхА2 и др. (этот процесс получил название реакции высвобождения), что приводит к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образованием тромбина, резко усиливающего агрегацию и приводящего к появлению сети фибрина, в которой застревают отдельные эритроциты и лейкоциты. Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, т. е. наступает ее ретракция. В норме остановка кровотечения из мелких сосудов занимает 2—4 мин. Важную роль для сосудисто-тромбоцитарного гемостаза играют производные арахидоновой кислоты — простагландин I2 (PgI2), или простациклин, и ТхА2. При сохранении целости эндотелиального покрова действие Pgl преобладает над ТхА2, благодаря чему в сосудистом русле не наблюдается адгезии и агрегации тромбоцитов. При повреждении эндотелия в месте травмы синтез Pgl не происходит, и тогда проявляется влияние ТхА2, приводящее к образованию тромбоцитарной пробки. |