Физиология. Нормальная физиология ответы на экзамен с задачами. Нормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека
Скачать 0.65 Mb.
|
Потенциал действия и история его открытия (Маттеучи, Мюллер, Келликер, Дюбуа-Реймон). Методы регистрации потенциала действия. Ионный механизм потенциала действия. ПД- впервые открыл Маттеучи(1837г) в опыте вторичного сокращения. Нерв 2 препарата лягушки набрасывали на мышцу 1, а нерв первого раздражали током: сокращались обе мышцы. Сокращение второй мышцы происходило в результате раздражения этой мышцы током, возникающим при сокращении 1 мышцы. Все клетки организма имеют заряд – ПП, обеспечиваемый неодинаковой концентрацией анионов и катионов внутри и вне клетки. Различие концентрации является следствием работы ионных насосов и неодинаковой проницаемости клеточной мембраны для разных ионов. При действии раздражителя на клетку возбудимой ткани вначале повышается проницаемость мембраны для натрия и быстро возвращается в норму. Затем то же самое происходит с калием, вследствие чего Na быстро перемещается в клетку, а К+ выходит из клетки согласно электрохимическому градиенту. Возникает процесс возбуждения –ПД. ПД- быстрое колебание величины мембранного потенциала, вследствие активации и инактивации ионных каналов и диффузии ионов в клетку и из клетки. Величина ПД колеблется в пределах 80-130мВ(у нервного 110мВ, у мышечного до 130мВ)Амплитуда ПД не зависит от силы раздражения. Она всегда максимальна для данной клетки в конкретных условиях(Закон все или ничего) Фаза деполяризации: уменьшение заряда клетки до нуля.Она развивается при действии деполяризующего раздражителя на клетку(эл.ток). Открываются ворота натриевых каналов. Когда деполяризация достигает КУД – открывается большое число натриевых каналов и натрий лавинообразно входит в клетку.Фаза инверсии:- изменение заряда клетки на противоположный. Имеет 2 части: восходящую и нисходящую. Восходящая обеспечивается в основном входом натрия в клетку. Нисходящая- закрытие натриевых каналов и выход калия на мембрану. Фаза реполяризации: восстановление ПП. Калий продолжает выходить из клетки по концентрационному градиенту. Теперь клетка снова имеет внутри отрицательный заряд, а снаружи положительный и электрический градиент препятствует выходу калия из клетки. Т.о. вся нисходящая часть ПД обусловлена выходом К+ из клетки. Ионная природа потенциала действия. Теория Бернштейна и А.Ходжкина. Ионные каналы. Величина потенциала действия в разных тканях. Пpиpоду возникновения мембpанного потенциала обьясняет мембpанно-ионная теоpия (пpедложил Ю.Беpнштейн, модифициpовали – А.Ходжкин, А.Хаксли, Б.Катц). Теоpия основывается на: 1. Особенностях стpоения биологической мембpаны 2. Устойчивой тpансмембpанной ионной ассиметpии (неодинаковой концентpацией ионов Na+,K+,Cl-,Ca2+,HCO3-) Ионную ассиметpию опpеделяют следующие механизмы: 1. Избиpательная пpоницаемость мембpаны для pазличных ионов 2. Работа тpансмембpанных насосов 3. Hаличие силы электpостатического взаимодействия В частности, во внутpиклеточной жидкости содеpжится больше ионов К+ (в 50 pаз) и HСО3-; во внеклеточной жидкости содеpжится больше ионов Na+ (в 8-12 pаз) и Cl- (в 30 pаз) В состоянии покоя мембpана высоко пpоницаема для ионов К+ и мало пpоницаема для ионов Na+, Cl- и дpугих ионов (особенно двух-, тpех- и больших валентностей) Катионы К+ по концентpационному гpадиенту пассивно диффундиpуют чеpез мембpану из клетки и несут с собой положительный заpяд. Анионы (глутамат, аспаpтат, сульфаты, оpганические фосфаты, белки и дp.) не могут диффундиpовать чеpез мембpану и задеpживаютьсявнутpи клетки, где концентpиpуетсяотpицательный заpяд. Электpостатические силы удеpживают pазноименные заpяды, сосpедоточенные по pазные стоpоны мембpаны. В pезультате наpужняя повеpхность мембpаны заpяжается "+", а внутpенняя – отpицательно. Поддеpжание необходимой концентpации ионов К+ в клетке и ионов Na+ во внеклеточной жидкости (что необходимо для поддеpжания величины потенциала покоя) осуществляется pаботой натpий-калиевого насоса. Он осуществляет возвpат ионов К+ в клетку и вывод ионов Na+ из клетки. Это обеспечивается пеpеносчиком АТФ-азой с затpатой энеpгии АТФ. Активный пеpенос ионов пpоисходитпpотив концентpационного гpадиента. Изменение мембранного потенциала при действии подпороговых раздражителей. Локальные ответы. Уровень критической деполяризации и порог деполяризации. Изменение ионной проводимости при генерации потенциала действия. Изменение мембранного потенциала при действии подпороговых раздражителей. Локальные ответы. Уровень критической деполяризации и порог деполяризации. Изменение ионной проводимости при генерации потенциала действия. Когда на возбудимую ткань действует 50% пороговой силы мембранный потенциал нейтрализуется в результате действия катода – это электротонический потенциал. Если от 55% до 99% пороговой силы – к пассивной деполяризации добавляется активная (Na+)- это локальный ответ. Он работает по закону силовых отношений, вызывает снижение МП, сопровождается повышением возбудимости, далеко не распространяется(затухает там, где возникает). Амплитуда локального ответа увеличивается по мере приближения силы раздражителя к порогу, а при его достижении локальный ответ перерастает в потенциал действия. Точка МП, когда мембрана начинает лавинообразно пропускать Na в клетку и возникает ПД- Критический уровень деполяризации. Величина, на которую надо уменьшить МП, чтобы возник ПД – порог деполяризации. Кривая Ферворна и её связь с динамикой мембранного потенциала при генерации потенциала действия. Лабильность. Максимальные и оптимальные ритмы. Усвоение ритма по А.А.Ухтомскому. А. Возбудимость клеткиво время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и так же, как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. 1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла некоторая деполяризация клеточной мембраны. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню и, когда деполяризация достигает примерно 50 % пороговой величины, начинают открываться потенциалчувствительные быстрые Na-каналы. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Екр, при которой возникает ПД. 2. Абсолютная рефрактерная фаза — это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1—2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефрактерная фаза. Клетка в этот период времени на раздражения любой силы не отвечает. Невозбудимость клетки в фазах деполяризации и восходящей части инверсии объясняется тем, что потенциалзависимые т-ворота Na-каналов уже открыты и Na+ быстро поступает в клетку по всем открытым каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации — уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения Na+ в клетку ничего изменить не может. Именно поэтому ПД либо совсем не возникает при раздражении, если оно мало, либо является максимальным, если действует раздражение достаточной силы (пороговой или сверхпороговой). В период нисходящей части фазы инверсии клетка невозбудима потому, что закрываются инактивационные h-ворота Na-каналов, в результате чего клеточная мембрана непроницаема для Na+ даже при сильном раздражении. Кроме того, в этот период открываются (уже в большом количестве) К-каналы, К+ быстро выходит из клетки, обеспечивая нисходящую часть фазы инверсии и реполяризацию. 3. Относительная рефрактерная фаза — это период восстановления возбудимости клетки, когда сильное раздражение может вызвать новое возбуждение Относительная рефрактерная фаза соответствует конечной части фазы реполяризации и следовой гиперполяризации клеточной мембраны, если она имеется. Пониженная возбудимость является следствием все еще повышенной проницаемости для К+ и избыточного выхода его из клетки. Поэтому, чтобы вызвать возбуждение в этот период, необходимо приложить более сильное раздражение, так как выход К+ из клетки препятствует ее деполяризации. 4. Фаза экзальтации — это период повышенной возбудимости. Он соответствует следовой деполяризации. Очередной ПД можно вызывать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяризации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Na+. Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность. Б. Лабильность, или функциональная подвижность (Н.Е.Введенский), — это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клетки, которая в свою очередь зависит от скорости изменения проницаемости клеточной мембраны. При этом особое значение имеет длительность рефрактерной фазы: чем больше рефрактерная фаза, тем ниже лабильность ткани. Мерой лабильности является максимальное число ПД, которое ткань может воспроизвести в 1 с. В эксперименте лабильность исследуют с помощью регистрации максимального числа ПД, которое может воспроизвести клетка при увеличении частоты ритмического раздражения.Лабильность различных тканей существенно различается. Так, лабильность нерва равна 500—1000, мышцы — около 200, нервно-мышечного синапса — порядка 100 импульсов в секунду. Лабильность ткани понижается при длительном бездействии органа и при утомлении, а также в случае нарушения иннервации. Следует отметить, что при постепенном увеличении частоты ритмического раздражения лабильность ткани повышается, т.е. ткань отвечает более высокой частотой возбуждения по сравнению с исходной частотой. Это явление открыто А.А.Ухтомским и называется усвоением ритма раздражения Законы раздражения Дюбуа-Реймона. Кривая сила-времени. Практическое значение хронаксиметрии. Закон раздражения Дюбуа-Реймона (аккомодации): раздражающее действие постоянного тока зависит не только от абсолютной величины силы тока или его плотности, но и от скорости нарастания тока во времени. При действии медленно нарастающего раздражителя возбуждение не возникает, так как происходит приспосабливание возбудимой ткани к действию этого раздражителя, что получило название аккомодации. Аккомодация обусловлена тем, что при действии медленно нарастающего раздражителя в мембране возбудимой ткани происходит повышение критического уровня деполяризации. При снижении скорости нарастания силы раздражителя до некоторого минимального значения потенциал действия вообще не возникает. Причина заключается в том, что деполяризация мембраны является пусковым стимулом к началу двух процессов: быстрого, ведущего к повышению натриевой проницаемости, и тем самым обусловливающего возникновение потенциала действия, и медленного, приводящего к инактивации натриевой проницаемости и как следствие этого - окончанию потенциала действия Закон силы-длительности: раздражающее действие постоянного тока зависит не только от его величины, но и от времени, в течение которого он действует. Чем больше ток, тем меньше времени он должен действовать для возникновения возбуждения. Ток ниже некоторой минимальной величины не вызывает возбуждение, как бы длительно он не действовал, и чем короче импульсы тока, тем меньшую раздражающую способность они имеют. Причиной такой' зависимости является мембранная емкость. Очень "короткие" токи просто не успевают разрядить эту емкость до критического уровня деполяризации. Минимальная величина тока, способная вызвать возбуждение при неограниченно длительном его действии, называется реобазой(АВ).В связи с тем, что определение этого времени затруднено, было введено понятие хронаксия(АЕ) - минимальное время, в течение которого ток, равный двум реобазам, должен действовать на ткань, чтобы вызвать ответную реакцию. АD-полезное время, АС- удвоенная реобаза Закон “всё или ничего” и правило “силовых отношений”. Кривая сила-времени. Законы Пфлюгера о действии длительно влияющего постоянного тока. Электрон. Катодическая депрессия и анодическая экзальтация. Закон силы: чем больше сила раздражителя, тем больше величина ответной реакции. В соответствии с этим законом функционируют сложные структуры, например, скелетная мышца. Амплитуда ее сокращений от минимальных (пороговых) величин постепенно увеличивается с увеличением силы раздражителя до субмаксимальных и максимальных значений. Это обусловлено тем, что скелетная мышца состоит из множества мышечных волокон, имеющих различную возбудимость. Поэтому на пороговые раздражители отвечают только те мышечные волокна, которые имеют самую высокую возбудимость, амплитуда мышечного сокращения при этом минимальна. С увеличением силы раздражителя в реакцию вовлекается все большее и большее количество мышечных волокон и амплитуда сокращения мышцы все время увеличивается. Когда в реакцию вовлечены все мышечные волокна, составляющие данную мышцу, дальнейшее увеличение силы раздражителя не приводит к увеличению амплитуды сокращения. Закон "все или ничего": подпороговые раздражители не вызывают ответной реакции ("ничего"), на пороговые раздражители возникает максимальная ответная реакция ("все"). По закону "все или ничего" сокращаются сердечная мышца и одиночное мышечное волокно. Закон "все или ничего" не абсолютен. Во-первых, на раздражители подпороговой силы не возникает видимой ответной реакции, но в ткани происходят изменения мембранного потенциала покоя в виде возникновения местного возбуждения (локального ответа). Во-вторых, сердечная мышца, растянутая кровью, при наполнении ею камер сердца, реагирует по закону "все или ничего", но амплитуда ее сокращения будет больше по сравнению с сокращением сердечной мышцы, не растянутой кровью Ошибка в опытах Люкаса и Като заключается в том, что, сосредоточив свое внимание лишь на одной стороне сложного процесса возбуждения и пренебрегая эволюционным подходом к оценке явлений, они возвели в ранг общего биологического закона частные особенности реакции частного вида живых образований— мышечной ткани. Законы Пфлюгера о действии одиночных толчков постоянного тока. Закон полярного действия постоянного тока: при замыкании тока возбуждение возникает под катодом, а при размыкании - под анодом. Прохождение постоянного электрического тока через нервное или мышечное волокно вызывает изменение мембранного потенциала покоя. Так, в области приложения к возбудимой ткани катода положительный потенциал на наружной стороне мембраны уменьшается, возникает деполяризация, которая быстро достигает критического уровня и вызывает возбуждение. В области же приложения анода положительный потенциал на наружной стороне мембраны возрастает, происходит гиперполяризация мембраны и возбуждение не возникает. Но при этом под анодом критический уровень деполяризации смещается к уровню потенциала покоя. Поэтому при размыкании цепи тока гиперполяризация на мембране исчезает и потенциал покоя, возвращаясь к исходной величине, достигает смещенного критического уровнями возникает возбуждение. При раздр. нерва или мышцы постоянным током возб-е возникает в момент замыкания постоянного тока только под катодом, а в момент размыкания - только под анодом. Эти факты объединяют под названием полярного закона раздражения Пфлюгера. Полярный закон доказывается следующими опытами: Умерщвляют участок нерва под одним из электродов, а второй электрод устанавливают на неповрежденном участке. Если с неповрежденным участком соприкасается катод, возбуждение возникает в момент замыкания тока: если же катод устанавл-ют на поврежденном участке, а анод - на неповрежденном, возбуждение возникает только при размыкании тока. Порог раздражения при размыкании, когда возбуждение возникает под анодом, значительно выше, чем при замыкании, когда возбуждение возникает под катодом. Постоянный ток близок к нервному импульсу, его применяют в медицине: рефлексотерапия, электропунктура. Законы были описаны в 1859 г Пфлюгером. 1. закон полярного действия постоянного тока 2. закон физиологического электротонуса. (Выявляет зависимость: в области катода при пропускании эл тока повышенная возбудимость и проводимость, а в области анода – пониженная.) Дополнения к закону: 1. если действует сильный ток, то вместо увеличения по анодом и катодом возбудимость и проводимость понижается – катотическая депрессия. Обеспечивает пресинаптическое торможение. 2. Не только под катодом и анодом меняется проводимость и возбудимость , но и вокруг полюсов Выделяют: Перекатэлектрон – повышение проводимости и возбудимости Переанэлектрон – понижение проводимости и возбудимости. 3. Закон сокращения. Эффект сокращения зависит от силы тока и направлении действий тока. По силе выделяют токи: -слабые пороговые средние -сильные По направлению: -восходящие –нисходящие. Физиология скелетных мышц, их строение и функции. Стадии и механизм сокращения мышц. Роль регуляторных белков. Теплообразование при сокращении мышц. Скелетные мышцы состоят из мышечных волокон, м.волокно - это многоядерная обр-е,кот имеет: 1. плазменую мембрану имеет инвагинации в виде поперечной трубочек) 2. Саркоплазм ретикулом(СПР),кот.обр-ет продольный стимул трубочек 3. миофибриллы, кот об-ют сократ.аппарат мышц они распол-ны друг другу, при этом за счет разным, перекрывания обр-ют А-и И- диски, за счет и есть поперечно исчерченность всего волокна. Каждый миофибрилла сост-т из миофиламентов, кот пред-ют собой тонкие нити белка актина и толстые теит белка мибрена. Морф. функцион. единицей мышечных волокон явл. саркомер. Физиологические свойства скелетных мышц: 1) возбудимость (ниже, чем в нервном волокне, что объясняется низкой величиной мембранного потенциала); 2) низкая проводимость, порядка 10–13 м/с; 3) рефрактерность (занимает по времени больший отрезок, чем у нервного волокна); 4) лабильность; 5) сократимость (способность укорачиваться или развивать напряжение). Различают два вида сокращения: а) изотоническое сокращение (изменяется длина, тонус не меняется); б) изометрическое сокращение (изменяется тонус без изменения длины волокна). Различают одиночные и титанические сокращения. Одиночные сокращения возникают при действии одиночного раздражения, а титанические возникают в ответ на серию нервных импульсов; 6) эластичность (способность развивать напряжение при растягивании). Механизм эл-мех сопряжения(явл основой сокращения) сокращение и расслабление мышцы представляет собой серию процессов, развертывающихся в следующей последовательности: нервный импульс --> выделение ацетилхолина пресинаптической мембраной нервно-мышечного синапса -->взаимодействие ацетилхолина с постсинаптической мембраной синапса -->возникновение потенциала действия --> электромеханическое сопряжение (проведение возбуждения по Т-канальцам, высвобождение Са++ и воздействие его на систему тропонин-тропомиозин-актин) --> образование поперечных мостиков и «скольжение» актиновых нитей вдоль миозиновых --> снижение концентрации ионов Са++ вследствие работы кальциевого насоса --> пространственное изменение белков сократительной системы --> расслабление миофибрилл. Энергия АТФ тратит на 5 шаг расслаб-пассивно,но он энергозависим(Са каналы закрыв-энергии) Са-АТФаза в СПР Контрактуры: 1избыток Са(движение) 2посмертн.окончение(нет АТФ д/расслаб-я) У чел, как и у всех позвоночных, волокна скелетных мышц обладают тремя св-ми: 1) возбудимостью, т.е. способностью отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала: 2) "проводимостью" - способностью к проведению потенциала действия вдоль всего волокна: 3) сократимостью, т.е. способностью сокращаться или изменять напряжение при возбуждении. В естественных условиях возб-е и сокр-е мышц вызываются нервн. импульсами, поступающими к мышечным волокнам из нервных центров. Непосредствен. раздр-е самой мышцы наз-ся прямым раздражением; раздражение двигат. нерва, ведущее к сокращению иннервированной этим нервом мышцы - непрямым раздраж. Ввиду того, что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредст. к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной тк, действует в первую очередь на наход-ся в ней окончания двигат. нервов и возбуждает их, что ведет к сокращению мышц. |