Главная страница
Навигация по странице:

  • Уровни регуляции функций. Механизмы регуляций. Особенности гуморального и нервного механизмов регуляции.

  • Регуляция функций с позиций кибернетики. Отрицательные и положительные обратные связи, их значение в регуляции. Понятие о саморегуляции.

  • Процессы саморегуляции основаны на использовании прямых и об­ратных связей.

  • Рефлекторный принцип деятельности нервной системы (Р.Декарт, Г.Прохаска, И.М.Сеченов, И.П.Павлов). Рефлекторная дуга и рефлекторное кольцо. Моно- и полисинаптические рефлексы.

  • Моносинаптическая рефлекторная дуга

  • Классификация рефлексов. Рефлекторный путь. Обратная афферентация и её значение. Понятие о приспособительном результате. Принципы рефлекторной теории.

  • Физиология. Нормальная физиология ответы на экзамен с задачами. Нормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека


    Скачать 0.65 Mb.
    НазваниеНормальная физиология как предмет, её задачи и значение для медицины. Связь физиологии с другими науками. Роль физиологии в деятельности человека
    АнкорФизиология
    Дата22.01.2020
    Размер0.65 Mb.
    Формат файлаdocx
    Имя файлаНормальная физиология ответы на экзамен с задачами.docx
    ТипДокументы
    #105264
    страница2 из 29
    1   2   3   4   5   6   7   8   9   ...   29

    Развитие физиологии в 18-20 вв.

  • Роль учений И.М. Сеченова и И.П. Павлова в создании материалистических основ физиологии.

  • Особенности современного периода развития физологии.

    XIXвек — период расцвета аналитической физиологии, когда были сделаны выдающиеся открытия практически по всем физио­логическим системам. Это происходило одновременно с бурным ростом естествознания, обретением фундаментальных знаний о при­роде: открытие закона сохранения энергии, клеточного строения организмов, формирование основ учения об эволюции жизни на Земле. Особое значение в развитии физиологии сыграли новые методические подходы и изобретения выдающихся физиологов той поры, о чем сказано в предыдущем разделе. Все это определило в середине XIX века выделение физиологии в самостоятельную науку. В университетах России, Англии создаются физиологические лабора­тории, интенсифицируются физиологические исследования в Европе.

    Во второй половине XIX века — начале XX столетия физио­логия в России становится одной из передовых в мировой науке, в чем выдающуюся роль сыграли столичные школы И. М. Сеченова (1829—1905), И. П. Павлова (1849—1936), известные школы Ка­зани, Киева, Одессы, Томска, Екатеринбурга. Российская наука при всей ее самобытности, методологической оригинальности под­держивала теснейшие творческие связи с ведущими физиологиче­скими школами Западной Европы, а затем и Америки.

    XX век — период интеграции и специализации наук, не обошел величайшими открытиями и физиологию. В 40—50-х годах ут­верждается мембранная теория биоэлектрических потенциалов (А.Л. Ходжкин, Э.Ф.Хаксли, Б. Катц). Роль этой теории в ус­тановлении ионных механизмов возбуждения нейронов в 1963 г. отмечается Нобелевской премией (Д. К. Экклс, Э. Ф. Хаксли, А. Л. Ходжкин). Делаются принципиальные открытия в области цитофизиологии и цитохимии.

    Конец XIX и начало XX века — период определяющих успехов в области физиологии нервов и мышц как возбудимых тканей (Дюбуа-Реймон, Э. Ф. Пфлюгер, П. Г. Гейденгайн, Ю. Бернштейн, Г. Л. Гельмгольц). В России особенно заметные исследования в этом разделе науки выполняются Н. Е. Введенским (1852—1922).

    XIX и XX века ознаменованы многими значительными успехами в изучении функций мозга.

    Выдающаяся роль в исследовании функций мозга принадлежит И. М. Сеченову (1829—1905), который в 1862 г. открыл явление торможения в ЦНС, что во многом определило последующие успехи исследований координации рефлекторной деятельности. При этом ученый подчеркнул определяющую роль внешней среды в рефлекторной деятельности мозга.

    На качественно новый уровень вывел теорию рефлекторной деятельности мозга И. П. Павлов (1849—1936), создав учение о высшей нервной деятельности (поведении) человека и животных, ее физиологии и патологии. И. П. Павлов основал школу отечественных физиологов, внесшую выдающийся вклад в мировую науку.



    Л. А. Орбели (1882—1958) основал учение об адаптационно-трофических влияниях симпатической нервной системы на соматические и вегетативные функции организма, явился одним из основателей эволюционной физиологии. Л. С. Штерн (1878—1968) создала учение о гематоэнцефалическом и гистогематическом барьерах, обеспечивающих гомеостатические функции в организме человека и животных.

    Велика заслуга А. А. Ухтомского (1875—1942) в изучении физиологии ЦНС. Его учение о доминанте — «основном принципе деятельности» мозга и поныне питает идеи организации целенаправленной деятельности человека и животных.

    Выдающуюся роль в изучении функций центральной нервной системы сыграл Ч. С. Шеррингтон (1856—1952), разработавший и сформулировавший основные принципы координационной деятельности мозга.

    Современная физиология ретикулярной формации мозга создана экспериментальными исследованиями Г. Мэгуна и Д. Моруцци. Следует подчеркнуть, что основой для проведения этих исследований послужили результаты научных работ И. М. Сеченова и В. М. Бехтерева.

    Физиология висцеральных органов в истории науки занимает весьма заметное место со времени возникновения физиологии до наших дней. XIX и XX века ознаменованы крупными открытиями по механизмам регуляции деятельности сердца и кровеносных сосудов: К.Людвиг (1816—1895), И. Ф. Цион (1842—1912), К. Бер нар (1813—1878), Ф.В.Овсянников (1827—1906), В. Эйнтховеи (1860—1927), Э. Г. Стерлинг (1866—1927) и др.

    Физиологией пищеварения в разное время занимались выдающиеся физиологи Европы и Америки (К. Людвиг, К. Бернар, Р. Геденгайн, Э. Старлинг и др.), но «пересоздал физиологию пищеварения» (так сказано в дипломе Нобелевского лауреата 1904 г.) И. П. Павлов — первый среди физиологов мира и первый Российский ученый, удостоенный этого высокого звания. Внутриклеточному пищеварению были посвящены работы еще одного Нобелевского лауреата — И. И. Мечникова (1845—1916). В лаборатории И. П. Павлова работали Е. С. Лондон, И. П. Разенков, Г. В. Фольборт, Б. П. Бабкин и др., которые продолжили славные традиции первооткрывателей в области физиологии пищеварения. Выдающуюся роль в этой области науки сыграл А. М. Уголев (1926—1992), которому принадлежат честь открытия мембранного кишечного пищеварения и определение его места в пищеварительном конвейере, современные концепции эндокринной деятельности желудочно-кишечного тракта, эволюции секреторных процессов, теория адекватного питания и другие оригинальные теории и гипотезы в физиологии.

    1. Уровни регуляции функций. Механизмы регуляций. Особенности гуморального и нервного механизмов регуляции.

    Регуляция — один из важнейших процессов в живом организме. Регуляция — это совокупность действий, производимых над орга­нами или системами, направленных на достижение определенной цели или положительного результата. Регуляция может прояв­ляться в двух вариантах: торможение или активация (стимуляция) дея­тельности органа.
    И.П. Павлов говорил, что живой организм представляет собой слож­ную обособленную систему, внутренние силы которой постоянно урав­новешиваются с внешними силами окружающей среды. В основе уравновешивания лежат процессы регуляции, управления физиологическими функциями.
    Процессы регуляции охватывают все уровни организации системы: молекулярный, субклеточный, клеточный, органный, системный, оргизменный, надорганизменный (популяционный, экосистемный, био­сферный).
    Управление в живых организмах осуществляется управляющей си­стемой. Она включает сенсорные рецепторы (на входе), рецепторы исполнительных структур (на выходе), каналы связи (жидкие среды организма и нервные проводники), а также ЦНС как управляющее устрой­ство, частью которого является память.
    Основные способы управления в живом организме включают ини­циацию, коррекцию и координацию физиологических процессов.
    Инициация — это процесс управления, вызывающий переход функ­ции органа от состояния относительного покоя к деятельному состоя­нию или наоборот. Например, при определенных условиях ЦНС ини­циирует работу пищеварительных желез, процессы мочевыведения и др.
    Коррекция — это управление деятельностью органа, который осу­ществляет физиологические функции в автоматическом режиме или инициирован управляющим сигналом. Например, коррекция работы сердца ЦНС через блуждающие и симпатические нервы.
    Координация — это согласование работы нескольких органов или систем одновременно для получения полезного результата. Например, для прямохождения необходима координация работы мышц и центров, которые обеспечивают перемещение конечностей, смещение центра тяжести тела, изменение тонуса скелетных мышц.
    Механизмы регуляции условно можно разделить на гуморальные и нервные.
    Гуморальные механизмы— это изменение физиологической актив­ности органов и систем под влиянием веществ, поступающих с лим­фой, кровью и другими жидкостями. Один из вариантов гуморальной регуляции — это изменение дея­тельности клеток под влиянием продуктов обмена веществ. Эти про­дукты могут изменять работу клетки и других органов. Например, под влиянием С02, образующегося в тканях, изменяется активность цент­ра дыхания. Недостатками этого механизма являются медленное рас­пространение и диффузный характер воздействий.
    Комбинированной формой, в которой используются одновремен­но взаимосвязанные гуморальные и нервные механизмы, является нейрогуморальный механизм. При этом передача воздействий осущест­вляется с помощью химических посредников — медиаторов, действую­щих на специфические рецепторы.
    Взаимодействие гуморального и нервного механизмов создает интегративный вариант управления, способный обеспечить адекватное изменение функций при изменении внешней и внутренней среды.
    Управление физиологическими функциями осуществляется посред­ством передачи информации. Она передается по афферентным (чув­ствительным) и эфферентным (исполнительным) каналам связи. По первым идет сообщение о наличии воздействий или отключении функ­ций, по вторым — информация о том, какие функции и в каком на­правлении следует изменять.
    Гуморальный механизм в качестве средств управления и передачи информации использует химические вещества, нервный механизм — потенциалы возбуждения (импульсы). Потенциалы кодируют необхо­димую информацию.
    В нормальных условиях нервный и гуморальный механизмы едины и, образуя нейрогуморальный механизм, реализуются в разнообразных комбинациях. Физиологически активные вещества, поступая в кровь, несут информацию в ЦНС. Под влиянием этой информации формиру­ется поток нервных импульсов к эффекторам. В других случаях поступ­ление информации в ЦНС по нервным каналам приводит к выделению гормонов. Нейрогуморальный механизм регуляции создает многозвенные кольцевые связи, где различные формы гуморального механизма сменяются и дополняются нервными, а последние обеспечивают включе­ние гуморальных.

    1. Регуляция функций с позиций кибернетики. Отрицательные и положительные обратные связи, их значение в регуляции. Понятие о саморегуляции.

    Саморегуляция — это вариант управления, при котором отклонение физиологической функции, или константы, от уровня, обеспечиваю­щего нормальную жизнедеятельность, является причиной возвращения этой функции (константы) к исходному уровню.
    Различают жесткие константы (осмотическое давление крови, рН), незначительное отклонение которых вызывает существенные измене­ния обменных процессов. Пластичные могут варьировать в довольно больших пределах и в течение длительного времени без существенного нарушения функций (количество и соотношение форменных элемен­тов крови, СОЭ и др.)
    Процессы саморегуляции основаны на использовании прямых и об­ратных связей.
    Прямая связь обеспечивает выработку регулирующих воздействий на основании информации об отклонении константы. Например, раз­дражение холодным воздухом терморецепторов кожи приводит к уве­личению процессов теплопродукции.
    Обратные связи заключаются в том, что выходной сигнал о состоя­нии объекта регуляции (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь усиливает управляющее воздействие, отрицательная — ослабляет управляющее воздействие и способствует возвращению показателя к стационарному уровню. Отрицательные обратные связи повышают устойчивость биологической системы.
    Конкретным аппаратом регуляции функций организма является функциональная система, которая, по определению П.К. Анохина, пред­ставляет собой систему, замкнутую за счет постоянной обратной связи, осуществляемой с периферических исполнительных органов опреде­ленным комплексом афферентных импульсов, которые через акцептор действия определяют выполнение ее функции (при дыхании афферент­ные импульсы идут от диафрагмы, трахеи, легких, межреберных мышц и их влияния, несмотря на их различное происхождение, интегрируют­ся в ЦНС путем временных и тонких соотношений между ними).
    Кроме указанных механизмов, поддерживающих гомеостаз, в орга­низме существуют и регуляторные системы, работающие не по прин­ципу согласования, а с учетом оценки величины поступающего сигна­ла, который нарушает состояние системы за счет отклонения его вели­чины от заданной не на выходе, а на входе системы. Улавливая на входе сигнал, нарушающий состояние системы, специальная структура оце­нивает его величину.
    Абсолютным условием синхронной работы саморегуляторных си­стем организма является наличие следующих факторов, придающих функциональной системе определенную направленность действия:
    — пластичность функциональной саморегулирующей системы (по­датливость ее действию внешних и внутренних отклоняющих факторов): «жесткая» генетическая функциональная система (осмотическое давление крови); «пластичная» система (уровень кровяного давления);
    -циклический (фазовый) процесс регуляторных приспособлений, направленных на восстановление исходного эффекта при его отклоне­нии в конкретном аппарате структур и механизмов, составляющих функ­циональную систему;

    -наличие информации о конечном приспособительном эффекте в центральных регулирующих аппаратах организма;

    -формирование защитно-приспособительных реакций саморегу­лирующими системами в экстремальных условиях. Сила максимально возможного защитного приспособления организма должна быть боль­шей, чем выраженность максимально возможного отклонения данного приспособительного конечного эффекта от константного уровня

    1. Рефлекторный принцип деятельности нервной системы (Р.Декарт, Г.Прохаска, И.М.Сеченов, И.П.Павлов). Рефлекторная дуга и рефлекторное кольцо. Моно- и полисинаптические рефлексы.

    Рефлекс (от лат. reflexus — отражённый) — стереотипная реакция живого организма на раздражитель, проходящая с участием нервной системы. Понятие о рефлексе возникло в XVI веке в учении Р. Декарта (1596-1650) о механической картине мира. Под рефлексом Р. Декарт понимал движение «животных духов» от мозга к мышцам по типу отражения светового луча. Согласно его схеме внешние предметы действуют на периферические окончания расположенных внутри нервных «трубок» нервных «нитей», которые, натягиваясь, открывают клапаны отверстий, ведущих из мозга в нервы. По каналам этих нервов «животные духи» перемещаются в соответствующие мышцы, которые в результате раздуваются, и, таким образом, происходит движение.

    Биологическая концепция рефлекса была сформирована чешским анатомом и физиологом Йиржи Прохазкой (1749-1820). Свои представления о рефлексе Й. Прохазка выразил следующим образом: внешние впечатления, возникающие в чувствительных нервах, быстро распространяются по всей их длине до самого начала. Там они отражаются по определенному закону, переходят на соответствующие им двигательные нервы и по ним очень быстро направляются к мышцам, которые затем производят точные и строго ограниченные движения. Впервые термин «рефлекс» был введен в научный язык Й. Прохазкой.

    В дальнейшем, уже в XIX в., была создана рефлекторная теория нервной деятельности. Дуализм Р. Декарта в понимании рефлекторной природы деятельности нервной системы был преодолен И. М. Сеченовым, который в «Рефлексах головного мозга» (1863) впервые четко обосновал, что явления сознания подчиняются физиологическим законам и что в основе психических явлений лежат рефлекторные процессы.

    В дальнейшем И. П. Павлов на примерах образования условных рефлексов показал, что поведение животных обусловлено рефлекторными механизмами. Механизмы поведения по И. П. Павлову основываются на трех принципах рефлекторной деятельности: принцип детерминизма (причинности) — всякое действие организма причинно обусловлено; принцип анализа и синтеза — любое воздействие вначале анализируется качественно, количественно, по биологической значимости, а затем в зависимости от результата анализа синтезируется соответствующее ответное поведение; принцип структурности — все физиологические процессы протекают в определенных нервных структурах.

    Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой. В рефлекторной дуге различают пять звеньев: 1) рецептор; 2) чувствительное волокно, проводящее возбуждение к центрам; 3) нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные; 4) двигательное волокно, передающее нервные импульсы на периферию; 5) действующий орган - мышца или железа. Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.

    Принимая во внимание значение для оптимальности регуляции информации о реакциях эффектора, обязательным звеном рефлек­торного акта является обратная связь. Если включить это звено В структурную основу рефлекса, то правильнее ее следует называть не рефлекторной дугой, а рефлекторным кольцом.

    Моносинаптическая рефлекторная дуга — нет вставочных нейронов (коленный рефлекс). Начинается не с рецепторов кожи и не с сухожилий. Возбуждаются мышечные веретена.

    Возбуждение или торможение от одного нейрона к другому нейрону передается с помощью синапсов. Есть два типа рефлекторных дуг полисинаптические (включают несколько синаптических контактов в ЦНС) и моносинаптические. Любая рефлекторная дуга начинается с рецептора.

    Пример полисинаптической рефлекторной дуги: Рецепторы полисинаптической рефлекторной дуги находятся в коже. Сигнал поступает по афферентному нейрону в спинной мозг, дальше включается цепочка из промежуточных нейронов. Если это двигательная рефлекторная дуга, значит мы должны выйти на мотонейрон. В результате сокращается скелетная мышца. Большая часть рефлекторных дуг полисинаптическая.

    В моносинаптической рефлекторной дуге отсутствуют промежуточные нейроны, поэтому коленный рефлекс не может быть изменен сознательно, т. е. со стороны коры больших полушарий. Рецептор моносинаптической рефлекторной дуги (как и мотонейрон) находится в самой мышце.

    1. Классификация рефлексов. Рефлекторный путь. Обратная афферентация и её значение. Понятие о приспособительном результате.

    2. Принципы рефлекторной теории.

    По ряду признаков рефлексы могут быть разделены на группы:

    · По типу образования: условные и безусловные рефлексы

    · По видам рецепторов: экстероцептивные (кожные, зрительные, слуховые, обонятельные), интероцептивные (с рецепторов внутренних органов) и проприоцептивные (с рецепторов мышц, сухожилий, суставов)

    · По эффекторам: соматические, или двигательные (рефлексы скелетных мышц), например флексорные, экстензорные, локомоторные, статокинетические и др.; вегетативные внутренних органов — пищеварительные, сердечно-сосудистые, выделительные, секреторные и др.

    · По биологической значимости: оборонительные, или защитные, пищеварительные, половые, ориентировочные.

    · По степени сложности нейронной организации рефлекторных дуг различают моносинаптические, дуги которых состоят из афферентного и эфферентного нейронов (например, коленный), и полисинаптические, дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или несколько синаптических переключений (например, флексорный).

    · По характеру влияний на деятельность эффектора: возбудительные — вызывающими и усиливающими (облегчающими) его деятельность, тормозные — ослабляющими и подавляющими её (например, рефлекторное учащение сердечного ритма симпатическим нервом и урежение его или остановка сердца — блуждающим).

    · По анатомическому расположению центральной части рефлекторных дуг различают спинальные рефлексы и рефлексы головного мозга.

    Любое раздражение, воспринимаемое рецептором, кодируется в нервный импульс и в таком виде по чувствительным волокнам направляется в ЦНС. Здесь эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию. Во время ответной реакции возбуждаются рецепторы рабочего органа и от них в ЦНС поступают импульсы - информация о достигнутом результате. Живой организм, как любая саморегулирующаяся система, работает по принципу обратной связи. Афферентные импульсы, осуществляющие обратную связь, либо усиливают и уточняют реакцию, если она не достигла цели, либо прекращают ее. Таким образом, рефлекс осуществляется не рефлекторной дугой, а рефлекторным кольцом; рефлекс заканчивается по достижении результата.

    Обратная афферентация (обратная связь) — информация от исполнительного органа в центральную нервную систему, где происходит анализ того, что должно быть и что произошло в ответ на действие раздражителя.

    На основании этого анализа от центра посылаются корректирующие импульсы к органу-исполнителю и к рецепторам. Эти сигналы могут увеличить или уменьшить их функциональную активность. Обратная связь в рефлексе обеспечивает автоматическое саморегулирование и образует самостоятельную функциональную систему, называемую рефлекторным кольцом, а также гарантирует автоматическую оценку и совершенное управление любым рефлекторным актом. Такие функциональные системы, обеспечивающие регулирование поведенческих реакции, называются нервными центрами.

    Приспособительный результат (ПР) – опред. соотнош. орг-ма и внеш. среды, кот. прекр. действ-е, направ. на его достижение, и делает возможным реализацию следующего поведенческого акта. Достичь рез-та – значит изм. соотнош. между орг-м и средой в полезном для орг-ма направлении. Достиж. ПР в функц. сис-ме осущ. с помощью специфических механизмов, из которых наиболее важными являются: - афферентный синтез всей поступающей в нервную систему информации; - принятие решения с одновременным формированием аппарата прогнозирования результата в виде афферентной модели акцептора результатов действия; - собственно действие; - сличение на основе обратной связи афферентной модели акцептора результатов действия и параметров выполненного действия; - коррекция поведения в случае рассогласования реальных и идеальных (смоделированных нервной системой) параметров действия
    1. 1   2   3   4   5   6   7   8   9   ...   29


  • написать администратору сайта