Главная страница
Навигация по странице:

  • Образование смешанных мицелл и всасывание продуктов гидролиза

  • "энтерогепатическая циркуляция".

  • Ресинтез жиров в слизистой оболочке тонкого кишечника

  • Рис. 8-16. Ресинтез жиров в клетках слизистой оболочки тонкой кишки.

  • Виды липопротеинов Вид Размеры

  • Липолиз. Бета-окисление высших жирных кислот. Биологическое значение. Локализация в клетке, схема процесса, энергетический эффект. Липо́лиз

  • Распад глицерина. Схема процесса, энергетический эффект. Анаболические превращения глицерина.

  • Липогенез в печени и жировой ткани. Виды жировой ткани, особенности метаболизма. Ожирение. Роль лептина.

  • Образование глицерол-3-фосфата

  • Синтез жиров в жировой ткани

  • Рис. 8-21. Синтез жиров в печени и жировой ткани.

  • Обмен липидов коллоквиум вопросы


    Скачать 337.5 Kb.
    НазваниеОбмен липидов коллоквиум вопросы
    Дата06.01.2019
    Размер337.5 Kb.
    Формат файлаdoc
    Имя файлаbkh_kollok_lipidy.doc
    ТипДокументы
    #62623
    страница2 из 3
    1   2   3


    Всасывание продуктов переваривания липидов в тонком кишечнике. Ресинтез липидов в энтероцитах и его биологическое значение. Гепатоэнтеральная циркуляция желчных кислот. Основные пути превращений хиломикронов.

    Всасывание продуктов гидролиза
    липидов в тонком кишечнике.
    ресинтез жиров

    Образование смешанных мицелл и всасывание продуктов гидролиза

    Продукты гидролиза липидов - жирные кислоты с длинным углеводородным радикалом, 2-моноацилглицеролы, холестерол, а также соли жёлчных кислот образуют в просвете кишечника структуры, называемые смешанными мицеллами. Смешанные мицеллы построены таким образом, что гидрофобные части молекул обращены внутрь мицеллы, а гидрофильные - наружу, поэтому мицеллы хорошо растворяются в водной фазе содержимого тонкой кишки. Стабильность мицелл обеспечивается в основном солями жёлчных кислот. Мицеллы сближаются со щёточной каймой клеток слизистой оболочки тонкого кишечника, и липидные компоненты мицелл диффундируют через мембраны внутрь клеток. Вместе с продуктами гидролиза липидов всасываются жирорастворимые витамины A, D, Е, К и соли жёлчных кислот. Наиболее активно соли жёлчных кислот всасываются в подвздошной кишке. Жёлчные кислоты далее попадают через воротную вену в печень, из печени вновь секретируются в жёлчный пузырь и далее опять участвуют в эмульгировании жиров. Этот путь жёлчных кислот называют "энтерогепатическая циркуляция". Каждая молекула жёлчных кислот за сутки проходит 5- 8 циклов, и около 5% жёлчных кислот выделяется с фекалиями.

    Всасывание жирных кислот со средней длиной цепи, образующихся, например, при переваривании липидов молока, происходит без участия смешанных мицелл. Эти жирные кислоты из клеток слизистой оболочки тонкого кишечника попадают в кровь, связываются с белком альбумином и транспортируются в печень.

    Ресинтез жиров в слизистой оболочке тонкого кишечника

    После всасывания продуктов гидролиза жиров жирные кислоты и 2-моноацилглицеролы в клетках слизистой оболочки тонкого кишечника включаются в процесс ресинтеза с образованием триацилглицеролов (рис. 8-16). Жирные кислоты вступают в реакцию этерификации только в активной форме в виде производных коэнзима А, поэтому первая стадия ресинтеза жиров - реакция активации жирной кислоты:

    HS КоА + RCOOH + АТФ → R-CO

    КоА + АМФ + Н4Р2О7.

    Реакция катализируется ферментом ацил-КоА-синтетазой (тиокиназой). Затем ацилКоА участвует в реакции этерификации 2-моноацилглицерола с образованием сначала диацилгли-церола, а затем триацилглицерола. Реакции ресинтеза жиров катализируют ацилтранеферазы.

    В реакциях ресинтеза жиров участвуют, как правило, только жирные кислоты с длинной углеводородной цепью. В ресинтезе жиров участвуют не только жирные кислоты, всосавшиеся из кишечника, но и жирные кислоты, синтезированные в организме, поэтому по составу ре-синтезированные жиры отличаются от жиров, полученных с пищей. Однако возможности "адаптировать" в процессе ресинтеза состав пищевых жиров к составу жиров организма человека ограничены, поэтому при поступлении с пищей жиров с необычными жирными кислотами,

    385



    Рис. 8-16. Ресинтез жиров в клетках слизистой оболочки тонкой кишки.

    например бараньего жира, в адипоцитах появляются жиры, содержащие кислоты, характерные для бараньего жира (насыщенные разветвлённые жирные кислоты). В клетках слизистой оболочки кишечника происходит активный синтез глицерофосфолипидов, необходимых для формирования структуры липопротеинов - транспортных форм липидов в крови.

    Образование хиломикронов

    Жиры, образовавшиеся в результате ресинтеза в клетках слизистой оболочки кишечника, упаковываются в ХМ. Основной апопротеин в составе ХМ - белок апоВ-48. Этот белок закодирован в том же гене, что и белок ЛПОНП - В-100 (табл. 8-5), который синтезируется в печени. В кишечнике в результате посттранскрипционных превращений "считывается" последовательность мРНК, которая кодирует только 48% от длины белка В-100, поэтому этот белок называется апоВ-48. Белок апоВ-48 синтезируется в шероховатом ЭР и там же гликозилируется. Затем в аппарате Гольджи происходит формирование ХМ, называемых "незрелыми". По механизму экзоцитоза они выделяются в хилус, образующийся в лимфатической системе кишечных ворсинок, и через главный грудной лимфатический проток попадают в кровь. В лимфе и крови с ЛПВП на ХМ переносятся


    1. Липопротеины. Биологическая роль. Место образования, строение, состав. Метаболические превращения ЛПОНП, ЛПНП и ЛПВП. Роль апопротеинов С-II, В100, E, A-I в метаболизме липопротеинов.

    Липопротеи́ны (липопротеиды) — класс сложных белков, простетическая группа которых представлена каким-либо липидом. Так, в составе липопротеинов могут быть свободные жирные кислоты, нейтральные жиры, фосфолипиды, холестериды.

    Липопротеины представляют собой комплексы, состоящие из белков (аполипопротеинов; сокращенно — апо-ЛП) и липидов, связь между которыми осуществляется посредством гидрофобных и электростатических взаимодействий.

    Липопротеины подразделяют на свободные, или растворимые в воде (липопротеины плазмы крови, молока и др.), и нерастворимые, т. н. структурные (липопротеины мембран клетки, миелиновой оболочки нервных волокон, хлоропластов растений).

    Среди свободных липопротеинов (они занимают ключевое положение в транспорте и метаболизме липидов) наиболее изучены липопротеины плазмы крови, которые классифицируют по их плотности. Чем выше содержание в них липидов, тем ниже плотность липопротеинов. Различают липопротеины очень низкой плотности (ЛПОНП), низкой плотности (ЛПНП), высокой плотности (ЛПВП) и хиломикроны. Каждая группа липопротеинов очень неоднородна по размерам частиц (наиболее крупные — хиломикроны) и содержанию в ней апо-липопротеинов. Все группы липопротеинов плазмы содержат полярные и неполярные липиды в разных соотношениях.

    Виды липопротеинов

    Вид

    Размеры

    Функция

    Липопротеины высокой плотности (ЛВП)

    8-11 нм

    Транспорт холестерина от периферийных тканей к печени

    Липопротеины низкой плотности (ЛНП)

    18-26 нм

    Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

    Липопротеины промежуточной (средней) плотности ЛПП (ЛСП)

    25-35 нм

    Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

    Липопротеины очень низкой плотности (ЛОНП)

    30-80 нм

    Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям

    Хиломикроны

    75-1200 нм

    Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

    Нековалентная связь в липопротеинах между белками и липидами имеет важное биологическое значение. Она обусловливает возможность свободного обмена липидов и модуляцию свойств липопротеинов в организме.

    Липопротеины являются:

    • структурными элементами мембран клеток животных организмов;

    • транспортными белками, транспортирующими холестерин и другие стероиды, фосфолипиды и др.

    • Апопротеин А1 синтезируется также в кишечнике, где входит в состав хиломикронов, но при липолизе в крови быстро переносятся на ЛВП. Апопротеин С синтезируется в печени, выделяется в кровоток и уже в кровотоке переносится на ЛВП. Новообразованный ЛВП похож на диск: фосфолипидный бислой, включающий свободный холестерин и апопротеин. Апопротеин А1 — активатор фермента лецитинхолестеринацилтрансферазы (ЛХАТ). Этот фермент связан с поверхностью ЛВП в плазме крови. ЛХАТ катализирует реакцию между фосфолипидом ЛВП и свободным холестерином частицы. При этом образуются эфиры холестерина и лизолецитин. Неполярные эфиры холестерина перемещаются внутрь частицы, освобождая место на поверхности для захвата нового холестерина, лизолецитин — на альбумин крови. Неполярное ядро раздвигает бислой, ЛВП приобретает сферическую форму. Этерифицированный холестерин переносится с ЛВП на ЛОНП, ЛНП и хиломикроны специальным белком ЛВП — переносчиком эфиров холестерола (апопротеин D), в обмен на фосфолипиды и триглицериды. ЛВП поглощается клетками печени с помощью рецепторного эндоцитоза через рецептор апопротеина Е.

    • Специфичности рецепторов апопротеинов Е и В-100 частично пересекаются. Они находятся на поверхности мембран клеток в клатриновой кавеоле. При соединении с лигандами кавеола замыкается в везикулу и липопротеин эндоцитируется. В лизосомах эфиры холестерина гидролизуются и холестерин поступает в клетку.



    1. Липолиз. Бета-окисление высших жирных кислот. Биологическое значение. Локализация в клетке, схема процесса, энергетический эффект.

    Липо́лиз — процесс расщепления жиров на составляющие их жирные кислоты под действием липазы.

    Липолиз протекает в митохондриях, куда жирные кислоты доставляются с помощью переносчика — карнитина. В процессе липолиза происходят циклические превращения молекул жирных кислот с отщеплением от них двухуглеродных производных KoA (CH3—CO—SKoA) (β-окисление жирных кислот) или одноуглеродных производных KoA (α-окисление жирных кислот); протекание одного цикла окисления жирной кислоты, сопровождается синтезом по одной молекуле ФАДН и НАДН.

    Фермент триглицеридлипаза расщепляет триглицериды на диглицериды и жирные кислоты, на следующей стадии активны диглицеридлипаза и моноглицеридлипаза. В результате работы этих ферментов образуются конечные продукты липолиза — глицерин и жирные кислоты.

    Липолиз является важнейшим энергетическим процессом в клетке, который обеспечивает синтез самого большого количества АТФ. Например, при окислении одной молекулы пальмитата (CH3(CH2)14COOH), образуется 131 молекула АТФ, две из которых используются для активации пальмитата.

    Окисление ВЖК происходят в митохондриях клеток, и называется бетта окислением. Доставка их к тканям и органам происходит при участии альбумина, а транспорт из цитоплазмы в митохондрии при участии карнитина.

    Процесс бета-окисления ВЖК складывается из следующих этапов:

    -активация ВЖК на наружной поверхности мембраны митохондрий при участии АТФ, конзима А и ионов магния с образованием активной формы ВЖК (ацил - КоА).

    -транспорт жирных кислот внутрь митохондрий возможен при присоединении активной формы жирной кислоты к карантину, находящемуся на наружной поверхности внутренней мембраны митохондрий. Образуется ацил-карнитин, обладающий способностью проходить через мембрану. На внутренней поверхности комплекс распадается и карнитин возвращается на наружную поверхность мембраны.

    -внутримитохондриальное окисление жирных кислот состоит из последовательных ферментативных реакций. В результате одного завершенного цикла окисления происходит отщепление от жирой кислоты одной молекулы ацетил-КоА, т.е. укорочение жирнокислотной цепи на два углеродных атома.Приэтом в результате двух дегидрогеназных реакций восстанавливается ФАД до ФАДН2 и НАД+ до НАДН2.


    1. Распад глицерина. Схема процесса, энергетический эффект. Анаболические превращения глицерина.

    При окислении глицерина образовались конечные продукты:

    СО2 на этапе превращения:

    1. ПИРУВАТА

    2. ИЗОЦИТРАТА

    3. Альфа-КЕТОГЛУТАРАТА

    Н2О на этапе превращения:

    1 . альфа -ГЛИЦЕРОФОСФАТА

    2. ГЛИЦЕРАЛЬДЕГИД-3-ФОСФАТА

    3. 2-ФОСФОГЛИЦЕРАТА

    4. ПИРУВАТА

    5. ИЗОЦИТРАТА

    6. Альфа-КЕТОГЛУТАРАТА

    7. СУКЦИНАТА

    8. МАЛАТА

    АТФ выделилось за счёт реакций

    А) Субстратного фосфорилиования на этапах превращения:

    1. 1,3-дифосфоглицерата

    2.2-фосфоенолпирувата

    3.Сукцинил-КоА

    Б) Окислительного фосфорилирования на этапах превращения:

    1.Альфа-глицерафосфата

    2.Глицеральдегид-3 фосфата

    3.Пирувата

    4.Изоцитрата

    5. Альфа-КЕТОГЛУТАРАТА

    6.Сукцината

    7.Малата
    Если глицерин распадается по пути к углеводам, то происходит дегидрирование.



    Митохондриальная фосфоглицериндегидрогеназа содержит в качестве небелковой части ФАД, а цитоплазматическая - НАД. В митохондриях отщепляемый водород переносится по укороченной цепи митохондриального окисления, и образуется 2 молекулы АТФ (фосфоглицерин (ФГА) - субстрат укороченной цепи).

    Для фосфоглицеринового альдегида существует два варианта дальнейших превращений:


    1. ФГА может окисляться в ГБФ-пути до СО2 и Н2О с образованием 21 молекулы АТФ.


    2. ФГА может вступить в реакции гликонеогенеза с образованием углеводов - глюкозы или гликогена (смотрите тему «Метаболизм углеводов и его регуляция»).


    Суммарный энергетический эффект окисления одной молекулы глицерина равен 22 АТФ.

    1. Липогенез в печени и жировой ткани. Виды жировой ткани, особенности метаболизма. Ожирение. Роль лептина.

    Синтез жиров в жировой ткани и печени

    Синтез жиров происходит в абсорбтивный период в печени и жировой ткани. Непосредственными субстратами в синтезе жиров являются ацил-КоА и глицерол-3-фосфат. Метаболический путь синтеза жиров в печени и жировой ткани одинаков, за исключением разных путей образования глицерол-3-фосфата.

    Образование глицерол-3-фосфата

    Синтез жиров в печени и жировой ткани идёт через образование промежуточного продукта - фосфатидной кислоты (рис. 8-21).

    Предшественник фосфатидной кислоты - глицерол-3-фосфат, образующийся в печени двумя путями:

    • восстановлением дигидроксиацетонфосфата - промежуточного метаболита гликолиза;

    • фосфорилированием глицеролкиназой свободного глицерола, поступающего в печень из крови (продукт действия ЛП-липазы на жиры ХМ и ЛПОНП).

    В жировой ткани глицеролкиназа отсутствует, и восстановление дигидроксиацетонфосфата - единственный путь образования глицерол-3-фосфата. Следовательно, синтез жиров в жировой ткани может происходить только в абсорбтивный период, когда глюкоза поступает в адипоциты с помощью белка-переносчика глюкозы ГЛЮТ-4, активного только в присутствии инсулина, и распадается по пути гликолиза.

    Синтез жиров в жировой ткани

    В жировой ткани для синтеза жиров используются в основном жирные кислоты, освободившиеся при гидролизе жиров ХМ и ЛПОНП (рис. 8-22). Жирные кислоты поступают в адипоциты, превращаются в производные КоА и взаимодействуют с глицерол-3-фосфатом, образуя сначала лизофосфатидную кислоту, а затем фосфатидную. Фосфатидная кислота после дефосфорилирования превращается в диацилглицерол, который ацилируется с образованием триацилглицерола.

    Кроме жирных кислот, поступающих в адипоциты из крови, в этих клетках идёт и синтез жирных кислот из продуктов распада глюкозы. В адипоцитах для обеспечения реакций синтеза жира распад глюкозы идёт по двум путям: гликолиз, обеспечивающий образование глицерол-3-фосфата и ацетил-КоА, и пентозофосфатный путь, окислительные реакции которого обеспечивают образование NADPH, служащего донором водорода в реакциях синтеза жирных кислот.

    Молекулы жиров в адипоцитах объединяются в крупные жировые капли, не содержащие воды, и поэтому являются наиболее компактной формой хранения топливных молекул. Подсчитано, что, если бы энергия, запасаемая в жирах, хранилась в форме сильно гидратированных молекул гликогена, то масса тела человека увеличилась бы на 14-15 кг.

    392



    Рис. 8-21. Синтез жиров в печени и жировой ткани.

    Синтез ТАГ в печени. Образование ЛПОНП в печени и транспорт жиров в другие ткани

    Печень - основной орган, где идёт синтез жирных кислот из продуктов гликолиза. В гладком ЭР гепатоцитов жирные кислоты активируются и сразу же используются для синтеза жиров, взаимодействуя с глицерол-3-фосфатом. Как и в жировой ткани, синтез жиров идёт через образование фосфатидной кислоты. Синтезированные в печени жиры упаковываются в ЛПОНП и сек-ретируются в кровь (рис. 8-23).

    В состав ЛПОНП, кроме жиров, входят холестерол, фосфолипиды и белок - апоВ-100. Это очень "длинный" белок, содержащий 11 536 аминокислот. Одна молекула апоВ-100 покрывает поверхность всего липопротеина.

    ЛПОНП из печени секретируются в кровь (рис. 8-23), где на них, как и на ХМ, действует ЛП-липаза. Жирные кислоты поступают в ткани, в частности в адипоциты, и используются для синтеза жиров. В процессе удаления жиров из ЛПОНП под действием ЛП-липазы ЛПОНП сначала превращаются в ЛГШП, а затем в ЛПНП. В ЛПНП основными липидными компонентами служат холестерол и его эфиры, поэтому ЛПНП являются липопротеинами, доставляющими холестерол в периферические ткани. Глицерол, освободившийся из липопротеинов, кровью транспортируется в печень, где опять может использоваться для синтеза жиров.

    Скорость синтеза жирных кислот и жиров в печени существенно зависит от состава пищи. Если в пище содержится более 10% жиров, то скорость синтеза жиров в печени резко снижается.

    Б. Мобилизация жиров из жировой ткани

    Адипоциты (место депонирования жиров) располагаются в основном под кожей, образуя подкожный жировой слой, и в брюшной полости, образуя большой и.малый сальники. Мобилизация жиров, т.е. гидролиз до глицерола и жирных кислот, происходит в постабсорбтивный период, при голодании и активной физической работе. Гидролиз внутриклеточного жира осуществляется под действием фермента гормончувствительной липазы - ТАГ-липазы. Этот фермент отщепляет одну жирную кислоту у первого углеродного атома глицерола с образованием диацилглицерола, а затем другие липазы гидролизуют его до глицерола и жирных кислот, которые поступают в кровь. Глицерол как водорастворимое вещество транспортируется кровью в свободном виде, а жирные кислоты (гидрофобные молекулы) в комплексе с белком плазмы - альбумином.

    393


    1   2   3


    написать администратору сайта