Главная страница
Навигация по странице:

  • 9. Зрительный анализатор: оптические среды глаза, фоторецепторы; фотохимические процессы в сетчатке. Теория двойственности.

  • 3 оболочки

  • Фоторецепторы глаза (палочки и колбочки)

  • Палочки

  • 3 вида колбочек у человека

  • 10. Физиологические механизмы аккомодации, рефракции; основные виды аномалий рефракции и обоснование их коррекции. Аккомодацией

  • Аномалии рефракции глаза. ·Близорукость

  • 11. Темновая и световая адаптация фоторецепторов; её значения.

  • 12. Проводниковый и корковый отделы зрительного анализатора, их «вклад» в формировании зрительного образа. Бинокулярное зрение и его значение.

  • 13. Физиологические основы остроты зрения, поля зрения. Острота зрения

  • Периферическое зрение (поле зрения)

  • 14. Физиологические механизмы цветовосприятия. Основные формы аномалий цветовосприятия и их физиологические обоснования.

  • 15. Слуховой анализатор: звукоулавливающий и звукопроводящий аппарат. Бинауральный слух и его физиологическое значение.

  • Наружное ухо является звукоулавливающим аппаратом.

  • Среднее ухо является звукопроводящим аппаратом

  • Общая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе


    Скачать 1.8 Mb.
    НазваниеОбщая Физиология 1 Аналитический и системный подход к изучению функций организма При аналитическом подходе
    Дата20.12.2021
    Размер1.8 Mb.
    Формат файлаdoc
    Имя файлаotvety_teoria.doc
    ТипДокументы
    #311423
    страница31 из 32
    1   ...   24   25   26   27   28   29   30   31   32

    8. Периферические и центральные механизмы адаптации анализаторов.

    Фундаментальным свойством всего живого является адаптация, т. е. приспособляемость к условиям внешней среды. Адаптационные процессы охватывают не только рецепторы, но и все звенья сенсорных систем. Адаптация периферических элементов проявляется в том, что пороги возбуждения рецепторов не являются постоянной величиной. Путем повышения порогов возбуждения, т. е. снижения чувствительности рецепторов происходит приспособление к длительным монотонным раздражениям. Например, человек не ощущает постоянного давления на кожу своей одежды, не замечает непрерывного тикания часов.

    Но скорости адаптации к длительным раздражениям рецепторы подразделяют на быстро адаптирующиеся (фазные) и медленно адаптирующиеся (тонические). Фазные рецепторы реагируют лишь в начале или при окончании действия раздражителя одним-двумя импульсами (например, кожные рецепторы давления-тельца Пачини), атонические продолжают посылать в ЦНС неослабевающую информацию в течение длительного времени действия раздражителя (например, так называемые вторичные окончания в мышечных веретенах, которые информируют ЦНС о статических напряжениях).

    Адаптация может сопровождаться как понижением, так и повышением возбудимости рецепторов. Так, при переходе из светлого помещения в темное происходит постепенное повышение возбудимости фоторецепторов глаза, и человек начинает различать слабо освещенные предметы — это так называемая темновая адаптация. Однако такая высокая возбудимость рецепторов оказывается чрезмерной при переходе в ярко освещенное помещение («свет режет глаза»). В этих условиях возбудимость фоторецепторов быстро снижается-происходит световая адаптация.

    Нервная система тонко регулирует чувствительность рецепторов в зависимости от потребностей момента путем эфферентной регуляции рецепторов. В частности, при переходе от состояния покоя к мышечной работе чувствительность рецепторов двигательного аппарата заметно возрастает, что облегчает восприятие информации о состоянии опорно-двигательного аппарата (гамма-регуляция). Механизмы адаптации к различной интенсивности раздражителя могут затрагивать не только сами рецепторы, но и другие образования в органах чувств. Например, при адаптации к различной интенсивности звука происходит изменение подвижности слуховых косточек (молоточка, наковальни и стремячка) в среднем ухе человека.
    9. Зрительный анализатор: оптические среды глаза, фоторецепторы; фотохимические процессы в сетчатке. Теория двойственности.

    Зрительная сенсорная система служит для восприятия и анализа световых раздражений. Через нее человек получает до 80-90 % всей информации о внешней среде. Глаз человека воспринимает световые лучи лишь в видимой части спектра — в диапазоне от 400 до 800 нм.

    Глазное яблоко представляет собой шаровидную камеру диаметром около 2.5 см, содержащую светопроводящие среды — роговицу, влагу передней камеры, хрусталик и студнеобразную жидкость — стекловидное тело, назначение которых преломлять световые лучи и фокусировать их в области расположения рецепторов на сетчатке. Стенками камеры служат 3 оболочки. Наружная непрозрачная оболочкасклера переходит спереди в прозрачную роговицу.

    Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужной оболочки (радужки) имеется отверстие — зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге.

    Внутренняя сетчатая оболочка (сетчатка) или ретина, содержит фоторецепторы глаза — палочки и колбочки и служит для преобразования световой энергии в нервное возбуждение. Светопреломляющие среды глаза, преломляя световые лучи, обеспечивают четкое изображение на сетчатке. Основными преломляющими средами глаза человека являются роговица и хрусталик. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т. е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке — фокусе.

    Фоторецепторы глаза (палочки и колбочки) — это высокоспециализированные клетки, преобразующие световые раздражения в нервное возбуждение. Фоторецепция начинается в наружных сегментах этих клеток, где на специальных дисках, как на полочках, расположены молекулы зрительного пигмента (в палочках — родопсин, в колбочках -разновидности его аналога). Под действием света происходит ряд очень быстрых превращений и обесцвечивание зрительного пигмента.

    Фотохимические реакции в наружных сегментах фоторецепторов вызывают изменения в мембранах остальной части рецепторной клетки, которые передаются биполярным клеткам (первым нейронам), а затем и ганглиозным клеткам (вторым нейронам), от которых нервные импульсы направляются в головной мозг. Часть ганглиозных клеток возбуждается на свету, часть — в темноте.

    Палочки, рассеянные преимущественно по периферии сетчатки (их 130 млн), и колбочки, расположенные преимущественно в центральной части сетчатки (их 7 млн), различаются по своим функциям (рис. 1-А). Палочки обладают более высокой чувствительностью, чем колбочки, и являются органами сумеречного зрения. Они воспринимают черно-белое (бесцветное) изображение. Колбочки представляют собой органы дневного зрения. Они обеспечивают цветное зрение. Существует 3 вида колбочек у человека: воспринимающие преимущественно красный, зеленый и сине-фиолетовый цвет. Разная их цветовая чувствительность определяется различиями в зрительном пигменте. Комбинации возбуждения этих приемников разных цветов дают ощущения всей гаммы цветовых оттенков, а равномерное возбуждение всех трех типов колбочек — ощущение белого цвета. При нарушении функции колбочек наступает цветовая слепота (дальтонизм), человек перестает различать цвета, в частности, красный и зеленый цвет. Это заболевание отмечается у 8% мужчин и у 0.5% женщин.

    Макс Шульц выдвинул теорию двойственности зрения о распределении обязанностей между палочками (их около 13 млн) и колбочками (7 млн). Центральный аппарат сетчатки (колбочки) обеспечивают дневное зрение и цветоощущение, а периферический (палочки) - ночное (скотопическое), или сумеречное (мезоскопическое) зрение (светоощущение, темновая адаптация).
    10. Физиологические механизмы аккомодации, рефракции; основные виды аномалий рефракции и обоснование их коррекции.

    Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное расстояние. Для ясного видения объекта необходимо, чтобы он был сфокусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхности проецировались на поверхность сетчатки. Когда мы смотрим на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. Зато изображение близких предметов при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и преломляющую способность. Механизмом аккомодации является сокращение ресничных мышц, которые изменяют выпуклость хрусталика. Хрусталик заключен в тонкую прозрачную капсулу, которую всегда растягивают волокна ресничного пояска (циннова связка). Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности.

    Старческая дальнозоркость. Хрусталик с возрастом теряет эластичность, и при изменении натяжения цинновых связок его кривизна меняется мало. Близкие предметы при этом видны плохо. Пожилые люди вынуждены пользоваться очками с двояковыпуклыми линзами.

    Аномалии рефракции глаза.

    ·Близорукость. Если продольная ось глаза слишком длинная, то лучи от далекого объекта сфокусируются не на сетчатке, а перед ней, в стекловидном теле.

    Дальнозоркость. В дальнозорком глазу продольная ось глаза укорочена, и поэтому лучи от далекого объекта фокусируются не на сетчатке, а за ней. Этот недостаток рефракции может быть компенсирован увеличением выпуклости хрусталика. Для чтения дальнозоркие люди должны пользоваться очками с двояковыпуклыми линзами.

    ·Астигматизм. Неодинаковое преломление лучей в разных направлениях. Астигматизм обусловлен не строго сферической поверхностью роговой оболочки

    11. Темновая и световая адаптация фоторецепторов; её значения.

    Временное ослепление при быстром переходе от темноты к яркому освещению исчезает спустя несколько секунд благодаря процессу световой адаптации. Одним из механизмов световой адаптации является рефлекторное сужение зрачков, другой зависит от концентрации ионов кальция в колбочках. При поглощении света в мембранах фоторецепторов закрываются катионные каналы, что прекращает вхождение ионов натрия и кальция и уменьшает их внутриклеточную концентрацию. Высокая концентрация ионов кальция в темноте подавляет активность гуанилатциклазы — фермента, определяющего образование цГМФ из гуанозинтрифосфата. Вследствие снижения концентрации кальция, обусловленного поглощением света, активность гуанилатциклазы повышается, что ведет к дополнительному синтезу цГМФ. Повышение концентрации этого вещества приводит к открытию катионных каналов, восстановлению тока катионов в клетку и, соответственно, способности колбочек отвечать на световые раздражители как обычно. Низкая концентрация ионов кальция способствует десенситизации колбочек, т. е. уменьшению их чувствительности к свету. Десенситизация обусловлена изменением свойств фосфодиэстеразы и белков катионных каналов, становящихся менее чувствительными к концентрации цГМФ.

    Способность различать окружающие предметы исчезает на некоторое время при быстром переходе от яркого света к темноте. Она постепенно восстанавливается в ходе темновой адаптации, обусловленной расширением зрачков и переключением зрительного восприятия с фотопической системы на скотопическую. Темновую адаптацию палочек определяют медленные изменения функциональной активности белков, приводящие к повышению их чувствительности. В механизме темновой адаптации участвуют и горизонтальные клетки, способствующие увеличению центральной части рецептивных полей в условиях низкой освещенности.
    12. Проводниковый и корковый отделы зрительного анализатора, их «вклад» в формировании зрительного образа. Бинокулярное зрение и его значение.

    Зрительная ceнсорная система состоит из следующих отделов:

    • периферический отдел -это сложный вспомогательный орган — глаз, в котором находятся фоторецепторы и тела 1-х (биполярных) и 2-х (ганглиозных) нейронов;

    • проводниковый отдел -зрительный нерв (вторая пара черепно-мозговых нервов), представляющий собой волокна 2-ых нейронов и частично перекрещивающийся в хиазме, передает информацию третьим нейронам, часть которых расположена в переднем двухолмии среднего мозга, другая часть — в ядрах промежуточного мозга, так называемых наружных коленчатых телах;

    • корковый отдел — 4-е нейроны находятся в 17 поле затылочной области коры больших полушарий. Это образование представляет собой первичное (проекционное) поле или ядро анализатора, функцией которого является возникновение ощущений. Рядом с ним находится вторичное поле или периферия анализатора (18 и 19 поля), функция которого — опознание и осмысливание зрительных ощущений, что лежит в основе процесса восприятия. Дальнейшая обработка и взаимосвязь зрительной информации с информацией от других сенсорных систем происходит в ассоциативных задних третичных полях коры — нижнетеменных областях.

    Бинокуля́рное зре́ние — способность одновременно чётко видеть изображение предмета обоими глазами; в этом случае человек видит одно изображение предмета, на который смотрит, то есть это зрение двумя глазами, с подсознательным соединением в зрительном анализаторе (коре головного мозга) изображений полученных каждым глазом в единый образ. Создаёт объёмность изображения. Бинокулярное зрение также называют стереоскопическим.

    Если бинокулярное зрение не развивается, возможно зрение только правым или левым глазом. Такое зрение называется монокулярным.

    Возможно попеременное зрение: то правым, то левым глазом — монокулярное альтернирующее. Иногда встречается зрение двумя глазами, но без слияния в один зрительный образ — одновременное.

    Отсутствие бинокулярного зрения при двух открытых глазах внешне проявляется в виде постепенно развивающегося косоглазия.

    13. Физиологические основы остроты зрения, поля зрения.

    Острота зрения — способность глаза воспринимать раздельно две точки, расположенные друг от друга на некотором расстоянии (детализация, мелкозернистость, разрешётка). Мерилом остроты зрения является угол зрения, то есть угол, образованный лучами, исходящими от краёв рассматриваемого предмета (или от двух точек A и B) к узловой точке (K) глаза. Острота зрения обратно-пропорциональна углу зрения, то есть, чем он меньше, тем острота зрения выше. В норме глаз человека способен раздельно воспринимать объекты, угловое расстояние между которыми не меньше 1′ (1 минута).

    Острота зрения зависит от размеров колбочек, находящихся в области жёлтого пятна, сетчатки, а также от ряда факторов: рефракции глаза, ширины зрачка, прозрачности роговицы, хрусталика (и его эластичности), стекловидного тела (кои составляют светопреломляющий аппарат), состояния сетчатой оболочки и зрительного нерва, возраста.

    Обратно пропорциональную величину остроте зрения и/или световой чувствительности называют разрешающей способностью простого(невооруженного) глаза .

    Периферическое зрение (поле зрения) — определяют границы поля зрения при проекции их на сферическую поверхность (при помощи периметра).

    Поле зрения — пространство, воспринимаемое глазом при неподвижном взгляде. Зрительное поле является функцией периферических отделов сетчатки; его состоянием в значительной мере определяется возможность человека свободно ориентироваться в пространстве.

    Изменения поля зрения обуславливаются органическими и/или функциональными заболеваниями зрительного анализатора: сетчатки, зрительного нерва, зрительного пути, ЦНС. Нарушения поля зрения проявляются либо сужением его границ (выражают в градусах или линейных величинах), либо выпадением отдельных его участков (Гемианопсия), появлением скотомы.
    14. Физиологические механизмы цветовосприятия. Основные формы аномалий цветовосприятия и их физиологические обоснования.

    Наличие трех типов колбочек обеспечивает восприятие всей цветовой палитры, в которой существует свыше семи миллионов цвет. градаций. Смешение лучей всех цветов-белый цвет, может быть получен при красный+синий, желтый+синий. А красный+зелен+симний- получим любой цвет. Теории цветоощущения: трехкомпонентная теория (Г. Гельмгольц)- цветовое восприятие обеспечивается тремя типами колбочек с различной цветовой чувствительностью к красному, зеленому и синему цветам .Всякий цвет оказывает действие на все три цветоощущающих элемента, но в разной степени. Теория оппонирующее цветов (Геринга):в колбочках есть вещества, чувствительные к бело-черному, красно-зеленому и желто-синему излучениям. Выявлено 7 типов модуляторов, оптимально реагирующих на свет с разной длиной волны (от 400 до 600 нм). В сетчатке и зрительных центрах найдено цветооппонентные нейроны.Действие на глаз излучений в какой-то части спектра их возбуждает, а в других частях спектра — тормозит. Рецептивные поля (РП)цветового восприятия: Ганглиозные клетки, передающие в ЦНС информацию о цвете, различаются организацией своих РП, состоящих из комбинаций трех типов колбочек. Наличие в РП антагонистичных фоторецепторов создает нейронный канал для передачи информации об определенном цвете. При наличии одного типа колбочек (монохромазия) человек не способен различить ни один цвет и видит в черно-белой градации, как при скотопическом зрении. При двух типах колбочек (дихромазия) цветовое восприятие ограничено, а три типа колбочек (трихромазия) -полнота цветового восприятия. Наиболее сильным раздражителем для концентрических противоцветных клеток сетчатки является действие антагонистических цветов на центр и периферию РП.

    15. Слуховой анализатор: звукоулавливающий и звукопроводящий аппарат. Бинауральный слух и его физиологическое значение.

    Слуховая сенсорная система служит для восприятия и анализа звуковых колебаний внешней среды. Она приобретает у человека особо важное значение и связи с развитием речевого общения между людьми. Деятельность слуховой сенсорной системы имеет также значение для оценки временных интервалов — темпа и ритма движений.

    Наружное ухо является звукоулавливающим аппаратом.

    Звуковые колебания улавливаются ушными раковинами и передаются по наружному слуховому проходу к барабанной перепонке, которая отделяет наружное ухо от среднего. Улавливание звука и весь процесс слушания двумя ушами — так называемый бинауральный слух — имеет значение для определения направления звука. Звуковые колебания, идущие сбоку, доходят до ближайшего уха на несколько десятитысячных долей секунды (0.0006 с) раньше, чем до другого. Этой ничтожной разницы во времени прихода звука к обоим ушам достаточно, чтобы определить его направление.

    Среднее ухо является звукопроводящим аппаратом. Оно представляет собой воздушную полость, которая через слуховую (Евстахиеву) трубу соединяется с полостью носоглотки. Колебания от барабанной перепонки через среднее ухо передают соединенные друг с другом 3 слуховые косточки — молоточек, наковальня и стремячко, а последнеe через перпонку овального окна передает эти колебания жидкости, находящейся во внутреннем ухе, — перилимфе. Благодаря слуховым косточкам амплитуда колебаний уменьшается, а сила их увеличивается, что позволяет приводить в движение столб жидкости во внутреннем ухе. При сильных звуках специальные мышцы уменьшают подвижность барабанной перепонки и слуховых косточек, адаптируя слуховой аппарат к таким изменениям раздражителя и предохраняя внутреннее ухо от разрушения. Благодаря соединению через слуховую трубу воздушной полости среднего уха с полостью носоглотки возникает возможность выравнивания давления по обе стороны барабанной перепонки, что предотвращает ее разрыв при значительных изменениях давления во внешней среде — при погружениях под воду, подъемах на высоту, выстрелах и пр. Это барофункция уха.
    1   ...   24   25   26   27   28   29   30   31   32


    написать администратору сайта