Главная страница
Навигация по странице:

  • 86. Теплопродукция, теплоотдача – их виды, регуляция данных процессов.

  • Термогенез подразделяют на сократительный и несократи­тельный Сократительный термогенез

  • Непроизвольный сократительный термогенез

  • Произвольный сократительный термогенез

  • Несократительный термогенез

  • В условиях температурного комфорта и физического покоя основной вклад в теплообразование вносят печень, мышцы, мозг, а при физической нагрузке подавляющая часть тепло­продукции обеспечивается мышцами.

  • Механизмы теплоотдачи организма.

  • Излучение тепла идет с помощью инфракрасных лучей, оно усиливается при наличии на относительно близком расстоянии холодных предметов с большой поверхностью.

  • Теплоотдача теплопроведением осуществляется при не­посредственном контакте неподвижных предметов с поверхностью тела.

  • .(это учить не обязательно просто для повышения IQ и если Галюся спросит,что за дичь ты несешь,чтобы ты не мычал,а толково разъяснил суть ответа!)

  • 87. Теплоотдача. Способы отдачи тепла с поверхности тела и их регуляция.

  • 89. Образование конечной мочи, ее состав, количество. Характеристика процессов реабсорбции и секреции различных веществ в канальцах нефрона.(немного описан в предыдущем вопросе)+

  • Тема: Железы внутренней секреции 90. Гормоны гипофиза, их роль в регуляции функций организма

  • Нормальная физиология. нф теория. Общая физиология возбудимых тканей. Рецептор, нерв, синапс, мышцы


    Скачать 0.68 Mb.
    НазваниеОбщая физиология возбудимых тканей. Рецептор, нерв, синапс, мышцы
    АнкорНормальная физиология
    Дата29.01.2023
    Размер0.68 Mb.
    Формат файлаdocx
    Имя файланф теория.docx
    ТипДокументы
    #910453
    страница8 из 8
    1   2   3   4   5   6   7   8
    Тема Обмен веществ и энергии

    85. Основной обмен, его величина. Факторы, влияющие на его уровень. Энергетический баланс организма. Рабочий обмен

    Тема Терморегуяция:

    86. Теплопродукция, теплоотдача – их виды, регуляция данных процессов.

    Теплопродукция в организме. Теплопродукция в организ­ме осуществляется за счет процессов обмена веществ, хими­ческих процессов, дающих энергию для различных проявлений жизнедеятельности. Поэтому регуляцию теплопродукции не­которые авторы называют химической терморегуляцией. Если величину теплопродукции организма, находящегося в состоя­нии физического и эмоционального покоя в условиях темпера­турного комфорта окружающей среды, принять за 100%, то 50% этой теплопродукции получается за счет энергии, расхо­дуемой на синтез АТФ. Остальные 50% тепла образуются при распаде АТФ, когда запасенная в ней энергия расходуется на всевозможные процессы жизнедеятельности.

    Когда человек находится в условиях среды, создающей условия температурного комфорта, то рабочая активность ме­ханизмов терморегуляции минимальна. В этих условиях в ор­ганизме идут жизненные процессы, сопровождающиеся выде­лением тепла, и этого тепла (термогенеза) достаточно, чтобы поддержать температуру тела на нормальном уровне. Если же температура среды ниже температуры комфорта и образую­щегося в организме тепла недостаточно, то терморегулятор-ные механизмы запускают целый ряд процессов, осуществля­емых ради увеличения теплопродукции. Это называют термо-регуляторной теплопродукцией (термогенезом).

    Термогенез подразделяют на сократительный и несократи­тельный

    Сократительный термогенез обеспечивается за счет тепла, образующегося при сокращении скелетных мышц. Их сокращения могут вызываться произвольно и непроизвольно Непроизвольный сократительный термогенез подраздс ляют на терморегуляторный тонус и мышечную дрожь.

    Терморегуляторный тонус проявляется в неощутимом для человека увеличении тонуса мышц и возрастании их тепло продукции (до 50% по отношению к теплопродукции в услови ях комфорта). Терморегуляторный тонус начинает проявлять ся при снижении температуры окружающей среды на 1 —3 °('. относительно комфортного уровня, даже при неизменной тем пературе сердцевины тела.

    Если охлаждающие влияния внешней среды продолжают на­растать, или теплосодержание в организме и температура серд цевины тела начнут снижаться, то механизмами терморегуля ции запускается мышечная дрожь, которая проявляется мел кими, асинхронными сокращениями отдельных групп мышеч­ных волокон. Мышечная дрожь раньше всего начинает проявляться в жевательных мышцах (отсюда выражение "сту­чит зубами", как признак охлаждения), затем подключаются мышцы верхнего плечевого пояса, спины и рук. При этом чело­век испытывает ощущение температурного дискомфорта и мо­жет сознательно начать выполнять движения, способствующие большей теплопродукции в мышцах и согреванию организма.

    Произвольный сократительный термогенез включает­ся при осуществлении человеком движений с целью согрева­ния при ощущении холода.

    Произвольная двигательная активность может увеличить теплопро­дукцию организма в 3-5 раз (на короткое время даже в 10-12 раз) и спо­собствовать защите от переохлаждения. Однако теплопродукция, вызыва­емая произвольной двигательной активностью, осуществляется и при вы­полнении обычной физической работы в условиях температурного ком­форта или жаркого климата. В таких условиях за счет образования избыточного тепла в мышцах развивается рабочая гипертермия, проявля­ющаяся повышением температуры тела до 40—41 °С. Такая гипертермия в ряде случаев является фактором, ограничивающим интенсивность и даль­нейшее выполнение работы. Организм включает механизмы, увеличиваю­щие выведение тепла: усиливает потоотделение, кожный кровоток и др.

    Несократительный термогенез проявляется увеличе­нием интенсивности обменных процессов и теплопродукции в различных тканях, особенно бурой жировой ткани и печени. Бурая жировая ткань составляет около 1 % от массы тела. Ее относительное количество может нарастать до 5% при систе­матическом воздействии холода на организм. Эта ткань распо­ложена в местах, требующих особой защиты от охлаждения: возле аорты, грудных вен, вдоль позвоночника, шеи и межло­паточной области. При действии холода на организм за счет усиления прихода к бурой жировой ткани импульсов по симпа­тическим нервным волокнам резко увеличивается распад жи­ровых молекул и возрастает теплопродукция, способствующая местному согреванию органов, которые окружает эта ткань.

    В условиях температурного комфорта и физического покоя основной вклад в теплообразование вносят печень, мышцы, мозг, а при физической нагрузке подавляющая часть тепло­продукции обеспечивается мышцами.

    Механизмы теплоотдачи организма. Отдача тепла от по­верхности тела происходит за счет четырех физических процес­сов: излучения, испарения, конвекции и теплопроведения(кон-дукции). При обычных комнатных условиях до 60% тепла отво­дится за счет излучения, по 20% — за счет испарения и конвек­ции и незначительное количество — за счет теплопроведения.

    Излучение тепла идет с помощью инфракрасных лучей, оно усиливается при наличии на относительно близком расстоянии холодных предметов с большой поверхностью.

    Испарение, обеспечивающее в обычных условиях отведе­ние около 20% тепла, становится единственно возможным способом теплоотдачи, когда температура окружающей среды больше температуры тела. В последнем случае для отведения всего тепла необходимо испарение около 4,5 л воды. При ис­парении 1 г воды организм отдает 0,58 ккал (2,4 кДж). В обыч­ных условиях за сутки с поверхности тела и слизистых оболо­чек дыхательных путей испаряется 700—1000 мл воды. На по­верхность тела вода доставляется благодаря потоотделению.

    Теплоотдача конвекцией идет при наличии перемещения воздуха или жидкости, соприкасающихся с поверхностью тела. Даже при полной неподвижности атмосферного воздуха в его пограничном с кожей слое возникают конвекционные потоки за счет того, что нагретый телом воздух смещается вверх, а на его место поступает более холодный воздух. Скорость теплоотдачи конвекцией резко возрастает при наличии ветра.

    Теплоотдача теплопроведением осуществляется при не­посредственном контакте неподвижных предметов с поверхностью тела. Рассмотренные пути теплоотдачи с поверхностей тела с окружающую среду называют наружным потоком тепла. Кроме него выделяют внутренний поток тепла — теплопередачу от внутренних органов и тканей к поверхности тела. Да -же в пределах головного мозга температура глубоко расположенных слоев нервной ткани может быть на 0,5—1 °С выше, чем в поверхностных слоях. Теплоперенос к поверхности тела идет главным образом за счет конвекции, с током крови и в некоторой степени — путем теплопроводности.(это учить не обязательно просто для повышения IQ и если Галюся спросит,что за дичь ты несешь,чтобы ты не мычал,а толково разъяснил суть ответа!)

    Сократительный термогенез:

    • терморегуляторный тонус,

    • мышечная дрожь,

    • произвольные движения

    Теплопродукция

    Несократительный термогенез:

    • тканевый метаболизм,

    • активный транспорт,

    • окисление бурого жира

    • Температура 36-37°С ядра тепа

    • цнс

    • Поведенческие реакции

    • одежда, жилище, пища движение

    • Теплоотдача:

    • излучением,

    • испарением,

    • конвекцией,

    • кондук-цией

    Влияние на теплоотдачу путем изменения:

    • интенсивности кровотока в

    • коже и органах, потоотделения

    • вентиляции легких, тонус

    • гладких мышц кожи (кожного

    • рельефа, положения волос)

    87. Теплоотдача. Способы отдачи тепла с поверхности тела и их регуляция.

    Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение. Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение. Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается. Рис. 13.4. Виды теплоотдачи. Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости. Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства. Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция). Отдача тепла организмом путем теплопроведения, конвекции и излучения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды. Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая». При температуре внешней среды около 20 "С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500— 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.

    Тема: Выделительная система.

    88. Почка, ее функции. Строение нефрона, особенности его кровоснабжения. Процесс образования первичной мочи. Первичная моча, ее количество и состав.

    Функции, строение, кровоснабжение почек

    Почки являются основным органом выделения. Они выполняют в организме много функций. Одни из них прямо или косвенно связаны с процессами выделения, другие - не имеют такой связи.

    Выделительная, или экскреторная, функция. Почки удаляет из организма избыток воды, неорганических и органических веществ, продукты азотистого обмена и чужеродные вещества: мочевину, мочевую кислоту, креатинин, аммиак, лекарственные препараты.

    Регуляция водного баланса и соответственно объема крови, вне- и внутриклеточной жидкости (волюморегуляция) за счет изменения объема выводимой с мочой воды.

    Регуляция постоянства осмотического давления жидкостей внутренней среды путем изменения количества выводимых осмотически активных веществ: солей, мочевины, глюкозы (осморегуляция).

    Регуляция ионного состава жидкостей внутренней среды и ионного баланса организма путем избирательного изменения экскреции ионов с мочой (ионная регуляция).

    Регуляция кислотно-основного состояния путем экскреции водородных ионов, нелетучих кислот и оснований.

    Образование и выделение в кровоток физиологически активных веществ: ренина, эритропоэтина, активной формы витамина D, простагландинов, брадикининов, урокиназы (инкреторная функция).

    Регуляция уровня артериального давления путем внутренней секреции ренина, веществ депрессорного действия, экскреции натрия и воды, изменения объема циркулирующей крови.

    Регуляция эритропоэза путем внутренней секреции гуморального регулятора эритрона - эритропоэтина.

    Регуляция гемостаза путем образования гуморальных регуляторов свертывания крови и фибринолиза - урокиназы, тромбопластина, тромбоксана, а также участия в обмене физиологического антикоагулянта гепарина.

    Участие в обмене белков, липидов и углеводов (метаболическая функция).

    Защитная функция: удаление из внутренней среды организма чужеродных, часто токсических веществ.

    Следует учитывать, что при различных патологических состояниях выделение лекарств через почки иногда существенно нарушается, что может приводить к значительным изменениям переносимости фармакологических препаратов, вызывая серьезные побочные эффекты вплоть до отравлений.

    Строение нефрона

    Основной структурно-функциональной единицей почки является нефрон, в котором происходит образование мочи. В зрелой почке человека содержится около 1 - 1,3 мл нефронов.

    Нефрон состоит из нескольких последовательно соединенных отделов

    Начинается нефрон с почечного (мальпигиева) тельца, которое содержит клубочек кровеносных капилляров. Снаружи клубочки покрыты двухслойной капсулой Шумлянского - Боумена.

    Внутренняя поверхность капсулы выстлана эпителиальными клетками. Наружный, или париетальный, листок капсулы состоит из базальной мембраны, покрытой кубическими эпителиальными клетками, переходящими в эпителий канальцев. Между двумя листками капсулы, расположенными в виде чаши, имеется щель или полость капсулы, переходящая в просвет проксимального отдела канальцев.

    Проксимальный отдел канальцев начинается извитой частью, которая переходит в прямую часть канальца. Клетки проксимального отдела имеют щеточную каемку из микроворсинок, обращенных в просвет канальца.

    Затем следует тонкая нисходящая часть петли Генле, стенка которой покрыта плоскими эпителиальными клетками. Нисходящий отдел петли опускается в мозговое вещество почки, поворачивает на 180° и переходит в восходящую часть петли нефрона.

    Дистальный отдел канальцев состоит из восходящей части петли Генле и может иметь тонкую и всегда включает толстую восходящую часть. Этот отдел поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец.

    Этот отдел канальца располагается в коре почки и обязательно соприкасается с полюсом клубочка между приносящей и выносящей артериолами в области плотного пятна.

    Дистальные извитые канальцы через короткий связующий отдел впадают в коре почек в собирательные трубочки. Собирательные трубочки опускаются из коркового вещества почки в глубь мозгового вещества, сливаются в выводные протоки и открываются в полости почечной лоханки. Почечные лоханки открываются в мочеточники, которые впадают в мочевой пузырь.

    По особенностям локализации клубочков в коре почек, строения канальцев и особенностям кровоснабжения различают 3 типа нефронов: суперфициальные (поверхностные), интракортикальные и юкстамедуллярные.

    Функция первых двух нефронов: участие в мочеобразовании.

    Функция третьего нефрона: выполняет роль шунта при большой физической нагрузки сбрасывает больший объём крови и выполняют эндокринную функцию.

    Кровоснабжение нефронов

    Оно делится на:

    1.Картикальной (корковое) – кровоснабжение 1,2 нефронов

    2.Юксто-медулярное - кровоснабжение 3 нефрона

    Кровоснабжение картикальных нефронов:

    В ворота почки входят почечная артерия, далее междолевая, далее дуговая (находится на границе между корковым и мозговым веществом), далее междольковая, далее приносящая артериола, которая подходит к капсуле нефрона, далее сосудистый клубочек, образованный сетью капилляров (чудесная сеть), далее выносящая артериола, далее вторичная сеть капилляров, далее отток крови. От подкапсулярной части кровь собирается в звездчатую вену, от которой отходит междольковая вена. От остальной части коркового вещества венулы открываются в междольковую вену, от нее дуговая вена, междолевая вена и почечная вена. Приносящая и выносящие артериолы разного диаметра, выносящая меньше приносящей. Разность давления в артериолах обуславливает высокое давление в сосудистом клубочке (70-90 мм. рт.ст.). вторичная четь капилляров оплетает почечные канальцы и имеет низкое давление крови (10-12 мм. рт.ст.).

    Особенности кровоснабжения юкста-медулярных нефронов:

    В ворота почки входят почечная артерия, далее междолевая, далее дуговая (находится на границе между корковым и мозговым веществом), далее междольковая артериола. Особенности:

    1.Приносящая и выносящая артериолы одинакового диаметра, поэтому в сосудистом клубочке не высокое давление, процесс фильтрации не возможен.

    2.Выносящая артериола образует вторичную сеть капилляров и прямую артерию, которая идет в мозговое вещество и там разветвляется на капиллярную сеть (образуется в результате 3 капиллярных сети).

    3.Отток крови осуществляется через прямую вену, идущую из мозгового вещества, далее дуговая, далее междолевая и почечная вена.

    Механизмы мочеобразования

    Мочеобразование осуществляется за счет трех последовательных процессов:

    1) клубочковой фильтрации (ультрафильтрации) воды и низкомолекулярных компонентов из плазмы крови в капсулу почечного клубочка с образованием первичной мочи;

    2) канальцевой реабсорбции - процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи в кровь;

    3) канальцевой секреции - процесса переноса из крови в просвет канальцев ионов и органических веществ.

    Клубочковая фильтрация

    Фильтрация воды и низкомолекулярных компонентов из плазмы крови в полость капсулы происходит через клубочковый, или гломерулярный, фильтр. Гломерулярный фильтр имеет 3 слоя: эндотелиальные клетки капилляров, базальную мембрану и эпителий висцерального листка капсулы, или подоциты. Эндотелий капилляров имеет поры диаметром 50-100 нм, что ограничивает прохождение форменных элементов крови (эритроцитов, лейкоцитов, тромбоцитов). Основным барьером для фильтрации является базальная мембрана.

    Поры в базальной мембране составляют 3 - 7,5 нм. Эти поры изнутри содержат отрицательно законные молекулы (анионные локусы), что препятствует прошению отрицательно заряженных частиц, в том числе белков. Третий слой фильтра образован отростками подоцитов, между которыми имеются щелевые диафрагмы, которые ограничивают прохождение альбуминов и других молекул с большой молекулой массой. Эта часть фильтра также несет отрицательный заряд. Легко фильтроваться могут вещества с молекулярной массой более 5500, абсолютным пределом для прохождения частиц через фильтр в норме является молекулярная масса 80 000.

    Таким образом, состав первичной мочи обусловлен свойствами гломерулярного фильтра. В норме вместе с водой фильтруются все низкомолекулярные вещества, за исключением большей части белков и форменных элементов крови. В остальном состав ультрафильтрата близок к плазме крови.

    При нефропатиях, нефритах поры теряют отрицательный заряд, что приводит к прохождению через них многих белков. Такие вещества, как гепарин, способствуют восстановлению анионных локусов, а антибиотики, наоборот, уменьшают их наличие.

    Основным фактором, способствующим процессу фильтрации, является давление крови (гидростатическое) в капиллярах клубочков. К силам, препятствующим фильтрации, относится онкотическое давление белков плазмы крови и давление жидкости в полости капсулы клубочка, т.е. первичной мочи. Следовательно, эффективное фильтрационное давление представляет собой разность между гидростатическим давлением крови в капиллярах и суммой онкотического давления плазмы крови и внутрипочечного давления:

    Рфильтр. = Ргидр. - (Ронк. +Рмочи).

    Таким образом, фильтрационное давление составляет:

    70 - (30 + 20) = 20 мм рт.ст.

    Количественной характеристикой процесса фильтрации является скорость клубочковой фильтрации, которая определяется путем сравнения концентрации определенного вещества в плазме крови и моче. Для этого используются вещества, которые являются физиологически инертными, нетоксичными, не связывающиеся с белками в плазме крови, не реабсорбирующиеся в почечных канальцах и выделяющиеся с мочой только путем фильтрации.

    Таким веществом является полимер фруктозы инулин. В организме человека инулин не образуется, поэтому для измерения скорости клубочковой фильтрации его вводят внутривенно. Измеренная с помощью инулина скорость клубочковой фильтрации называется также коэффициентом очищения от инулина, или клиренсом инулина:

    Cин = Mин Ч V/Пин,

    где Син - клиренс инулина, Мин - концентрация инулина в конечной моче, Пин - концентрация инулина в плазме, V - объем мочи в 1 мин.

    Клиренс показывает, какой объем плазмы (в мл) очистился целиком от данного вещества за 1 мин.

    Сравнивая клиренсы других веществ с клиренсом инулина, можно определить процессы, участвующие в выделении этих веществ с мочой. Если клиренс вещества равен клиренсу инулина, следовательно это вещество только фильтруется. Если клиренс вещества больше клиренса инулина, значит это вещество выделяется не только за счет фильтрации, но и секреции. Если клиренс вещества меньше клиренса инулина, то вещество после фильтрации реабсорбируется.

    В клинике для определения скорости клубочковой фильтрации обычно используют эндогенный метаболит креатинин, концентрация которого в крови довольно стабильна. Креатинин удаляется из крови в основном путем клубочковой фильтрации, но в очень малых количествах он секретируется, поэтому его клиренc - менее точный показатель, чем клиренс инулина. Тем не менee он широко используется в клинике, так как для его измерения не требуется внутривенное введение.

    В норме у мужчин скорость клубочковой фильтрации составляет 125 мл/мин, а у женщин - 110 мл/мин.

    Канальцевая реабсорбция

    Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных бочках. В почке человека за сутки образуется 150 - 180 л фильма, или первичной мочи, а выделяется 1,0-1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках.

    Канальцевая реабсорбция - это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью абсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na+, C1-, HCO3- и многие другие вещества.

    В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

    Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

    Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na+, K+ - АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

    Глюкоза. Она поступает из просвета канальца в клетки проксимального канальца с помощью специального переносчика, который должен обязательно присоединить ион Ма4'. Перемещение этого комплекса внутрь клетки осуществляется пассивно по электрохимическому и концентрационному градиентам для ионов Na+. Низкая концентрация натрия в клетке, создающая градиент его концентрации между наружной и внутриклеточной средой, обеспечивается работой натрий-калиевого насоса базальной мембраны.

    В клетке этот комплекс распадается на составные компоненты. Внутри почечного эпителия создается высокая концентрация глюкозы, поэтому в дальнейшем по градиенту концентрации глюкоза переходит в интерстициальную ткань. Этот процесс осуществляется с участием переносчика за счет облегченной диффузии. Далее глюкоза уходит в кровоток. В норме при обычной концентрации глюкозы в крови и, соответственно, в первичной моче вся глюкоза реабсорбируется. При избытке глюкозы в крови, а значит, в первичной моче может произойти максимальная загрузка канальцевых систем транспорта, т.е. всех молекул-переносчиков.

    В этом случае глюкоза больше не сможет реабсорбироваться и появится в конечной моче (глюкозурия). Эта ситуация характеризуется понятием "максимальный канальцевый транспорт" (Тм). Величине максимального канальцевого транспорта соответствует старое понятие "почечный порог выведения". Для глюкозы эта величина составляет 10 ммоль/л.

    Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

    Аминокислоты. Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т.е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и аминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот. Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

    Белок. В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20-75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, пример, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

    Мочевина. Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления.

    Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

    Слабые органические кислоты и основания. Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся - в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой.

    Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCO3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

    Вода и электролиты. Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% - в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (полиурии).

    Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме Того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% - в петле нефрона, 9% - в дистальном извитом канальце и 1% - в собирательных трубочках.

    Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na+, K+ - АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них - это обмен Na+ на Н+ (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода - наружу.

    Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

    Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na+, К+ - АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

    Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы.

    Поворотно-противоточная система представлена параллельно расположенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови.

    В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной.

    Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na"1" и мочевины, и моча становится все более концентрированной.

    При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.

    Канальцевая секреция

    Канальцевая секреция - это транспорт веществ из крови в просвет канальцев (мочу). Канальцевая секреция позволяет быстро экскретировать некоторые ионы, например калия, органические кислоты (мочевая кислота) и основания (холин, гуанидин), включая ряд чужеродных организму веществ, таких как антибиотики (пенициллин), рентгеноконтрастные вещества (диодраст), красители (феноловый красный), парааминогиппуровую кислоту - ПАГ.

    Канальцевая секреция представляет собой преимущественно активный процесс, происходящий с затратами энергии для транспорта веществ против концентрационного или электрохимического градиентов. В эпителии канальцев существуют разные системы транспорта (переносчики) для секреции органических кислот и органических оснований. Это доказывается тем, что при угнетении секреции органических кислот пробенецидом секреция оснований не нарушается.

    Транспортные секретирующие механизмы обладают свойством адаптации, т.е. при длительном поступлении вещества в кровоток количество транспортных систем за счет белкового синтеза постепенно увеличивается. Данный факт необходимо учитывать, например, при лечении пенициллином. Так как очищение крови от него постепенно возрастает, требуется увеличение дозировки для поддержания необходимой терапевтической концентрации.

    Так как при невысоких концентрациях в крови ПАГ или диодраста они полностью удаляются из крови при однократном прохождении через почку путем секреции клетками проксимальных канальцев, это позволило, определяя клиренс этих веществ, получить значение объема плазмы крови, которое протекает по сосудам коркового вещества почки, т.е. эффективного почечного плазмотока. Зная гематокрит, можно рассчитать и величину коркового кровотока в почке.

    Кроме того, канальцевый эпителий синтезирует и секретируют вещества, образующиеся в самих клетках эпителия, например, аммиак (путем дезаминирования некоторых аминокислот), гиппуровую кислоту (из бензойной кислоты и гликокола), которые выделяются с мочой, а также ренин, простагландины, глюкозу почек, поступающие в кровь.

    89. Образование конечной мочи, ее состав, количество. Характеристика процессов реабсорбции и секреции различных веществ в канальцах нефрона.(немного описан в предыдущем вопросе)+

    В сутки у человека образуется и выделяется от 0,7 до 2 л мочи. Эта величина носит название суточного диуреза и зависит от количества выпитой жидкости, т.к. здоровым человеком выделяется 65-80% ее объема с мочой. Основное количество мочи образуется днем, тогда как ночью оно составляет не более половины дневного объема. Удельный вес мочи колеблется в широком диапазоне - от 1005 до 1025, обратно пропорционально объему принятой жидкости и образовавшейся мочи. Реакция суточной мочи обычно слегка кислая, однако рН колеблется в зависимости от характера питания. При растительной пище моча приобретает щелочную реакцию, а при белковой - становится более кислой. Моча обычно прозрачна, но имеет небольшой осадок, получаемый при центрифугировании и состоящий из малого количества эритроцитов, лейкоцитов и эпителиальных клеток. В осадке мочи, собранной за 12 ночных часов, содержится от 0 до 400 000 эритроцитов, от 300 000 до 1,8 миллионов лейкоцитов. Здесь также могут присутствовать кристаллы мочевой кислоты, уратов и оксалата кальция (в кислой моче) или кристаллы мочекислого аммония, фосфорнокислого и углекислого кальция (в щелочной моче). Белок и глюкоза в конечной моче практически отсутствуют, содержание аминокислот не превышает 0,5 г за сутки. Поскольку в канальцах нефрона происходит обратное всасывание основной части профильтровавшейся воды, солей и других веществ, то выделяется их с мочой от 45% (мочевина) до 0,04% (бикарбонат) от профильтровавшегося количества. Однако, за счет всасывания воды и процессов концентрирования мочи, а также секреции в канальцах, содержание в конечной моче ряда веществ превышает их концентрацию в плазме крови: мочевины в 67 раз, калия в 7, сульфатов в 90, фосфатов в 16 раз. В небольших количествах в мочу поступают производные продуктов гниения белков в кишечнике - индола, скатола, фенола. В моче содержится широкий спектр органических кислот, небольшие концентрации витаминов (кроме жирорастворимых), биогенные амины и их метаболиты, стероидные гормоны и их метаболиты, ферменты и пигменты, определяющие цвет мочи. С мочой в разных концентрациях, зависящих от ее количества, выделяются практически все неорганические катионы и анионы, в том числе и широкий спектр микроэлементов

    Образование конечной мочи является результатом трех последовательных процессов.

    В почечных клубочках происходит начальный этап мочеобразования — клубочковая, или гломерулярная, фильтрация, ультрафильтрация безбелковой жидкости из плазмы крови в капсулу почечного клубочка, в результате чего образуется первичная моча.

    Канальцевая реабсорбция — процесс обратного всасывания профильтровавшихся веществ и воды.

    Секреция. Клетки некоторых отделов канальца переносят из внеклеточной жидкости в просвет нефрона (секретируют) ряд органических и неорганических веществ либо выделяют в просвет канальца молекулы, синтезированные в клетке канальца.

    Канальцевая реабсорбция. Вся образующаяся первичная моча поступает в канальцы и петлю Генле, где подвергается реабсорбции 178 л воды и растворенных в ней веществ. Вместе с водой в кровь возвращаются не все они. По способности к реабсорбции все вещества первичной мочи делятся на три группы:

    Пороговые (глюкоза, аминокислоты). В норме они реабсорбируются полностью.

    Низкопороговые (мочевина). Реабсорбируются частично.

    Непороговые (креатинин, сульфаты). Они не реабсорбируются..

    Последние 2 группы создают осмотическое давление и обеспечивают канальцевый диурез, т.е. сохранение определенного количества мочи в канальцах, Реабсорбция глюкозы и аминокислот происходит в проксимальном извитом канальце и осуществляется с помощью транспортной системы сопряженной с натрием. Они транспортируются против концентрационного градиента. При сахарном диабете содержание глюкозы в крови становится выше порога выведения и глюкоза появляется в моче. При почечном диабете нарушается система транспорта глюкозы в эпителии канальцев и она выделяется с мочой, несмотря на нормальное содержание в крови. Реабсорбция других пороговых и непороговых веществ происходит путем диффузии. Облигатная реабсорбция основных ионов и воды происходит в проксимальном канальце, петле Генле. Факультативная в дистальном канальце. Они образуют поворотно-противоточную систему, так как в них происходит взаимный обмен ионов. В проксимальном канальце и нисходящем колене петли Генле происходит активный транспорт большого количества ионов натрия. Он осуществляется натрий-калиевой АТФазой. За натрием в межклеточное пространство происходит пассивная реабсорбция большого количества воды. В свою очередь эта вода способствует дополнительной пассивной реабсорбции натрия в кровь. Одновременно с ними реабсорбируются и гидрокарбонат анионы. В нисходящем колене петли и дистальном канальце реабсорбируется относительно небольшое количество натрия, а вслед за ним и вода. В этом отделе нефрона ионы натрия реабсорбируются с помощью сопряженного натрий-протонного и натрий-калиевого обмена. Ионы хлора переносятся здесь из мочи в тканевую жидкость с помощью активного хлорного транспорта. Низкомолекулярные белки реабсорбируются в проксимальном извитом канальце.

    Канальцевая секреция и экскреция происходят в проксимальном участке канальцев. Это транспорт в мочу из крови и клеток эпителия канальцев веществ, которые не могут фильтроваться. Активная секреция осуществляется тремя транспортными системами. Первая транспортирует органические кислоты, например парааминогиппуровую. Вторая – органические основания. Третья – этилендиаминтетраацетат (ЭДТА). Экскреция слабых кислот и оснований происходит с помощью не ионной диффузии. Это их перенос в недиссоциированном состоянии. Для осуществления экскреции слабых кислот необходимо, чтобы реакция канальцевой мочи была щелочной, а для выведения щелочей – кислой. В этих условиях они находятся в недиссоциированном состоянии и скорость их выделения возрастает. Таким путем также секретируются протоны и катионы аммония.

    Тема: Железы внутренней секреции

    90. Гормоны гипофиза, их роль в регуляции функций организма

    1   2   3   4   5   6   7   8


    написать администратору сайта