Приложение 1_Эконометрика. Оценочные материалы текущего контроля успеваемости. Методические материалы по проведению процедур оценивания
Скачать 4.57 Mb.
|
Фактические значения F-критериев сравниваются с табличным значением при 1= 7 и 2 = n - k – 1=109-7-1=101 степенях свободы и уровне значимости α=0.05, где k – количество факторов. Так как все значения F-критериев больше табличного, то все исследуемые независимые переменные мультиколлинеарны с другими. Больше других влияет на общую мультиколлинеарность факторов фактор ВП, меньше – фактор ДО. 3) Проверка наличия мультиколлинеарности каждой пары переменных ● Вычислим частные коэффициенты корреляции по формуле , где – элементы матрицы . Матрицу коэффициентов частной корреляции , можно получить с помощью программ VSTAT, SPSS(таблица 6). Таблица 6. Матрица коэффициентов частных корреляций
● Вычисление t-критериев по формуле (таблица 7). Таблица 7. t-критерии для коэффициентов частной корреляции12
Фактические значения t-критериев сравниваются с табличным значением при степенях свободы (n - k – 1)=109-7-1=101 и уровне значимости α=0,05. Из таблиц 6 и 7 видно, что две пары факторов ОА и ДЗ, ПП и ВП имеют высокую статистически значимую частную корреляцию, то есть являются мультиколлинеарными. Для того, чтобы избавиться от мультиколлинеарности, можно исключить одну из переменных коллинеарной пары. В паре ПП и ВП оставляем ПП, так как у нее меньше связи с другими факторами; в паре ОА и ДЗ оставим ОА, во-первых, с экономической точки зрения, а, во-вторых, так как у нее меньше значение F-критерия и, значит, она меньше влияет на общую мультиколлинеарность факторов. Таким образом, в результате проверки теста Фаррара-Глоубера остается пять факторов: ДО, КО, ОА, ОС, ПП. Завершая процедуры корреляционного анализа, целесообразно посмотреть частные корреляции выбранных факторов с результатом ЧП. В последнем столбце таблицы 8 представлены значения t-критерия для столбца ЧП. Таблица 8. Матрица коэффициентов частной корреляции с результатом ЧП
Из таблицы 8 видно, что межфакторные частные корреляции слабые, а переменная ЧП имеет высокую и одновременно статистически значимую частную корреляцию только с фактором ПП. Уточнение набора факторов, наиболее подходящих для регрессионного анализа, осуществим другими методами отбора. 2) Пошаговый отбор факторов методом исключения из модели статистически незначимых переменных В соответствии с общим подходом, пошаговый отбор следует начинать с включения в модель всех имеющихся факторов, то есть в нашем случае с восьмифакторной регрессии. Но мы не будем включать в модель факторы из заранее известных коллинеарных пар (в связи с наличием коллинеарности ранее были исключены из рассмотрения ВП и ДЗ), а также фактор ЗП, имеющий слабую связь с ЧП. Таким образом, пошаговый отбор факторов начнем с пятифакторного уравнения. Фрагмент пятифакторного регрессионного анализа представлен на рисунке 2.
Рисунок 2. Фрагмент пятифакторного регрессионного анализа Статистически незначимыми ( ) оказались три фактора (на рисунке 1 они выделены жирным шрифтом). На следующем этапе пошагового отбора удаляем статистически незначимый фактор с наименьшим значением t-критерия, то есть фактор ОА (на рисунке 2 выделен цветом). Аналогично поступаем до тех пор, пока не получим уравнение, в котором все факторы окажутся статистически значимыми. Этапы получения такого уравнения, то есть фрагменты соответствующих регрессионных анализов, представлены на рисунках 3, 4.
|