Охарактеризуйте переваривание углеводов пищи на примере крахмала
Скачать 1.41 Mb.
|
23. Охарактеризуйте участие кортизола в регуляции обмена углеводов по плану: 1) химическая природа гормона; 2) место синтеза; 3) сигнал для синтеза и секреции и механизм действия гормона-регулятора; 4) основные этапы синтеза кортизола (начиная с эфиров холестерола и заканчивая реакциями гидроксилирования); 5) транспорт в крови; 6) механизм действия на клетки-мишени, метаболический процесс углеводного обмена, «запускаемый» кортизолом, механизм регуляции активности ключевого фермента; 7) конечный биологический эффект. биологически активный глюкокортикоидный гормон стероидной природы Осуществляется в сетчатой и пучковой зонах коры надпочечников. Образованный из холестерола прогестерон подвергается окислению 17-гидроксилазой по 17 атому углерода. После этого в действие последовательно вступают еще два значимых фермента: 21-гидроксилаза и 11-гидроксилаза.В конечном итоге образуется кортизол Активируют: АКТГ, обеспечивающий нарастание концентрации кортизола в утренние часы, к концу дня содержание кортизола снова снижается. Кроме этого, имеется нервная стимуляция секреции гормонов. Уменьшают: кортизол по механизму обратной отрицательной связи. 1. Превращение холестерола в прегненолон, 2. Образование прогестерона, 3.гидроксилирование прогестерона, 4. Образование кортизола Транспорт в крови???? Мишенью является лимфоидная, эпителиальная (слизистые оболочки и кожа), жировая, костная и мышечная ткани, печень. Углеводный обмен В целом вызывают повышение концентрации глюкозы крови: усиление мощности глюконеогенеза из кетокислот за счет увеличения синтеза фосфоенолпируват-карбоксикиназы, увеличение синтеза гликогена в печени за счет активации фосфатаз и дефосфорилирования гликогенсинтазы. снижение проницаемости мембран для глюкозы в инсулинзависимых тканях. 24. Охарактеризуйте участие адреналина в регуляции обмена углеводов по плану: 1) химическая природа гормона; 2) место синтеза; 3) последовательность реакций синтеза (субстраты, ферменты / класс ферментов, продукты); 4) сигнал для секреции; 5) механизм передачи сигнала в клетки-мишени при участии альфа-адренергических рецепторов, метаболические процессы углеводного обмена, «запускаемые» адреналином, механизм регуляции активности их ключевых ферментов; 6) конечный биологический эффект Адреналин – производное аминокислот, амин синтезируется в мозговом слое надпочечников исходные субстраты биосинтеза катехоламинов — фенилаланин или тирозин. В соответствии с гипотезой они превращаются сначала в диоксифенилаланин (ДОФА), затем ДОФА — в дофамин, из дофамина синтезируется норадреналин, а из него — адреналин. выделяется из клеток мозгового вещества надпочечников в ответ на сигналы нервной системы, идущие из мозга при возникновении экстремальных ситуаций, требующих внезапной мышечной деятельности. α-Ацренорецепторы различают по локализации (например, гепатоциты имеют α1-рецепторы, адипоциты - α2-адренорецепторы) и механизму трансформации биологического сигнала. Эффекторные системы, связанные с α1- и α2-адренорецепторами, включают G-белки разного типа - Gplc-белки (G-белок стимулирующий) и Gi-белки (G-белок ингибирующий) и соответственно ферменты - фосфолипазу С или аденилатциклазу. В печени гормон увеличивает распад гликогена до глюкозы и повышает ее концентрацию в крови. В мышцах адреналин стимулирует распад гликогена до глюкозо-6-фосфата, который не может выйти из клетки в кровь, а утилизируется путем гликолиза с образованием молочной кислоты. Таким образом, в отличие от печени, при распаде гликогена в мышцах никогда не образуется свободная глюкоза. В жировой ткани гормон увеличивает распад жира до жирных кислот, что сопровождается повышением их концентрации в крови. Действие адреналина на сердечно-сосудистую систему проявляется в том, что он увеличивает силу и частоту сердечных сокращений, повышает артериальное давление, сужает артериолы кожи, слизистых оболочек и приносящие артериолы клубочков почек (поэтому при стрессе наблюдаются бледность и анурия - прекращение образования мочи), но расширяет сосуды сердца, мышц и внутренних органов. Действуя через систему кровообращения, адреналин затрагивает практически все функции всех органов, в результате чего мобилизуются силы организма для противодействия стрессовым ситуациям. Кроме указанных эффектов, адреналин расслабляет гладкую мускулатуру бронхов, кишечника, тела мочевого пузыря, но сокращает сфинктеры желудочно-кишечного тракта, мочевого пузыря, мышцы, поднимающие волосы на коже, расширяет зрачки. 25. Охарактеризуйте участие адреналина в регуляции обмена углеводов по плану: 1) химическая природа гормона; 2) место синтеза; 3) последовательность реакций синтеза (субстраты, ферменты / класс ферментов, продукты); 4) сигнал для секреции; 5) механизм передачи сигнала в клетки-мишени при участии бета-адренергических рецепторов, метаболические процессы углеводного обмена, «запускаемые» адреналином, механизм регуляции активности их ключевых ферментов; 6) конечный биологический эффект. Адреналин – производное аминокислот, амин синтезируется в мозговом слое надпочечников исходные субстраты биосинтеза катехоламинов — фенилаланин или тирозин. В соответствии с гипотезой они превращаются сначала в диоксифенилаланин (ДОФА), затем ДОФА — в дофамин, из дофамина синтезируется норадреналин, а из него — адреналин. выделяется из клеток мозгового вещества надпочечников в ответ на сигналы нервной системы, идущие из мозга при возникновении экстремальных ситуаций, требующих внезапной мышечной деятельности. β-Адренорецепторы встречаются практически во всех тканях организма. Количество β-адренорецепторов, приходящееся на клетку, варьирует от 300 до 4000. Центр связывания адреналина образован аминокислотными остатками третьего, пятого и шестого доменов. Другой функционально важный центр - область взаимодействия с G-белками, участвующими в формировании клеточного ответа. Остатки серина и треонина в области третьего внутреннего домена и С-конца адренорецептора могут фосфорилироваться под действием протеинкиназы А или специфической киназой р-адренорецептора. Фосфорилирование приводит к изменению конформации рецептора и снижению сродства к G-белку или препятствует связыванию с G-белком. В печени гормон увеличивает распад гликогена до глюкозы и повышает ее концентрацию в крови. В мышцах адреналин стимулирует распад гликогена до глюкозо-6-фосфата, который не может выйти из клетки в кровь, а утилизируется путем гликолиза с образованием молочной кислоты. Таким образом, в отличие от печени, при распаде гликогена в мышцах никогда не образуется свободная глюкоза. В жировой ткани гормон увеличивает распад жира до жирных кислот, что сопровождается повышением их концентрации в крови. Действие адреналина на сердечно-сосудистую систему проявляется в том, что он увеличивает силу и частоту сердечных сокращений, повышает артериальное давление, сужает артериолы кожи, слизистых оболочек и приносящие артериолы клубочков почек (поэтому при стрессе наблюдаются бледность и анурия - прекращение образования мочи), но расширяет сосуды сердца, мышц и внутренних органов. Действуя через систему кровообращения, адреналин затрагивает практически все функции всех органов, в результате чего мобилизуются силы организма для противодействия стрессовым ситуациям. Кроме указанных эффектов, адреналин расслабляет гладкую мускулатуру бронхов, кишечника, тела мочевого пузыря, но сокращает сфинктеры желудочно-кишечного тракта, мочевого пузыря, мышцы, поднимающие волосы на коже, расширяет зрачки У ребенка, находящегося на естественном вскармливании, частый жидкий стул, вздутие живота, рвота и снижение веса. Температура тела не повышалась. При проведении нагрузки лактозой сахар крови повысился на 15 мг% (норма 50 мг% и выше). При нагрузке одновременно глюкозой и галактозой повышение составило 55 мг%. Укажите причины нарушений и объясните свое решение. Результат проведения нагрузки одновременно моносахаридами глюкозой и галактозой оказался в пределах нормы, в отличии от результата нагрузки нерасщепленным дисахаридом – лактозой. Это обстоятельство указывает на нарушение работы или дефицит ферментативных комплексов, участвующих в гидролизе лактозы до глюкозы и галактозы, так как если тест при нагрузке моносахаридом сопровождается адекватным повышением его концентрации в крови, а нагрузка дисахаридом не дает нормальной реакции (как в нашем случае), то это, скорее всего, указывает на дефект кишечной дисахаридазы, а не системы транспорта, поэтому процессы всасывания в данном случае в пределах нормы. Ферментативным комплексом, ответственным за гидролиз лактозы, является β- гликозидазный комплекс (лактаза). Он расщепляет β-1,4-гликозидные связи между галактозой и глюкозой в лактозе. По химической природе является гликопротеином, связан с щеточной каемкой и распределен неравномерно по всему тонкому кишечнику. Активность лактазы колеблется в зависимость от возраста. Так, активность лактазы у плода в норме особенно повышена в поздние сроки беременности и сохраняется на высоком уровне до 5-7 лет. Затем активность фермента снижается, составляю у взрослых 10% от уровня активности, характерного для детей. Большое количество нерасщепленной лактозы не может всасываться, поэтому она накапливается в кишечнике, повышая там осмотическое давление, из-за чего вода переходит из тканей в просвет кишки. За счет этого у ребенка наблюдается жидкий стул. Кроме того, лактоза в толстой кишке является субстратом для молочнокислого брожения, вследствие чего наблюдается вздутие живота. Также подобное состояние можно диагностировать путем определения водорода в выдыхаемом воздухе. Водород образуется в результате действия бактериальных ферментов на лактозу. У ребенка в возрасте 2-х недель прием молока приводит к вздутию живота, диарее. Нагрузочный тест с применением глюкозы и галактозы сопровождается повышением глюкозы в крови на 15 мг% (норма 50 мг% и выше). Укажите причины нарушений и объясните свое решение. Результат проведения нагрузки моносахаридами глюкозы и галактозы оказался существенно ниже нормы, что позволяет сделать вывод о нарушении процессов всасывания углеводов в кишечнике. Нарушения всасывания могут быть следствием дефекта какого- либо компонента (белка или фермента), участвующего в системе транспорта моносахаридов через мембрану. Большое количество моносахаридов из-за дефекта системы всасывания не может попасть в кровь, поэтому она накапливается в кишечнике, повышая там осмотическое давление, из-за чего вода переходит из тканей в просвет кишки. За счет этого у ребенка наблюдается жидкий стул. Кроме того, поступающие в толстую кишку углеводы являются субстратом для молочнокислого брожения, в процессе которого образуется СО2, вследствие чего наблюдается вздутие живота. У больного диастазная активность мочи снижена, в каловых массах зерна крахмала. С патологией какого органа связаны данные нарушения? Объясните причины указанных нарушений на фоне патологии названного органа. Данные показатели указывают на патологию поджелудочной железы. Панкреатическая амилаза – экскреторный фермент, который в норме выделяется в просвет ДПК и осуществляет гидролиз крахмала. Пониженные показатели встречаются при хроническом панкреатите. Наличие в каловых массах зерен крахмала свидетельствует о нарушении процессов нормального переваривания углеводов, что опять же указывает на патологию поджелудочной железы, так как именно панкреатическая амилаза осуществляет гидролиз а-1,4-гликозидных связей в молекуле крахмала. У больного постоянная глюкозурия (в качестве восстанавливающего вещества в моче идентифицируется глюкоза), глюкоза крови натощак 3,5 ммоль/л, при проведении перорального теста на толерантность к глюкозе получается нормальная сахарная кривая. Объясните диагностическую значимость теста на толерантность к глюкозе и причину глюкозурии. Возможно здесь физиологическое отклонение.Больной принял какое-либо лекарство или физические упражнения были. У больных с врожденным низким уровнем фосфофруктокиназы и пируваткиназы развивается гемолитическая анемия. Ответьте на вопросы: 1) в каком метаболическом процессе обмена углеводов участвуют данные ферменты; 2) какие реакции катализируют данные ферменты (назовите субстраты, продукты, класс и подкласс ферментов), напишите формулами реакции ферментов; 3) какую роль названный метаболический процесс играет в эритроцитах; 4) каковы причины гемолиза эритроцитов при данном наследственном заболевании. Дефект глюкозо-6-фосфат дегидрогеназы в эритроцитах приводит к • дефициту NADРH • снижению концентрации восстановленной формы глутатиона и активации свободнорадикального окисления липидов мембраны эритроцитов и белков • окислению SH-групп гемоглобина • образованию дисульфидных связей • агрегации гемоглобина и формированию телец Хайнца Нарушается целостность мембраны эритроцитов, снижается продолжительность жизни гемоглобина, что приводит к гемолизу (гемолитическая анемия)-ПФК Фосфофруктокиназа (ФФК) является важным ферментом практически всех живых клеток. Он выполняет определенную функцию в процессе гликолиза, а именно — превращение фруктозы-6-фосфата во фруктозу-1, 6-бисфосфат. Глюкоза поддерживает устойчивое количество АТФ, основного носителя энергии в живых клетках. Пируваткиназа — это третий фермент, принимающий участие в гликолизе. Пируваткиназа также связана с уровнем сахара в крови. Она необходима для гормональной регуляции гликолиза, обеспечения активного роста тканей и работы внутренних органов. Гормоны и ферменты, которые регулируют скорость гликолиза, определяют и метаболизм гликогена — вещества, которое накапливается в печени и расходуется во время физических нагрузок. 3)фр-6 фосфат во фр-1,6 бисфосфат. Катализируется ферментом фосфофруктокиназой; образовавшийся фруктозо-6-фосфат вновь фосфорилирется за счет второй молекулы АТФ. Данная реакция аналогично гексокиназной практически необратима, протекает в присутствии ионов магния и является наиболее медленно текущей реакцией гликолиза. Фактически эта реакция определяет скорость гликолиза в целом. 10) фосфоенолпируват в пируват.реакция характеризуется разрывом высокоэргической связи и переносом фосфатного остатка от фосфоенолпирувата на АДФ (субстратное фосфорилирование). Катализируется ферментом пируваткиназой. Для действия пируваткиназы необходимы ионы Mg2+, а также одновалентные катионы щелочных металлов (К+ или др.). Внутри клетки реакция является практически необратимой. При гемолитической анемии эритроциты могут разрушаться. Иммунная гемолитическая анемия возникает, когда иммунная система ошибочно воспринимает свои собственные красные кровяные клетки, как чужеродные вещества. Антитела затем начинают действовать против красных кровяных клеток. Эти антитела атакуют эритроциты и заставляют их разрушаться раньше положенного срока. 6. Хрусталик глаза является светопреломляющей средой глаза, и митохондрии в нем отсутствуют. В качестве источника энергии в хрусталике используется глюкоза. Какой путь катаболизма глюкозы обеспечивает энергией АТФ хрусталик глаза? Выполните следующие задания: 1) напишите формулами заключительную реакцию этого пути катаболизма, назовите субстрат, продукты, фермент и его кофермент-витамин, класс фермента и группу этого класса, охарактеризуйте биологическую роль данной реакции в названном пути катаболизма; 2) назовите и охарактеризуйте способ синтеза АТФ в этом катаболическом процессе, укажите его энергетический выход; 3) приведите примеры других клеток и тканей, в которых синтез АТФ происходит так же, как в хрусталике; 4) укажите, каким дальнейшим превращениям может подвергаться конечный продукт процесса и последствия, возникающие при его накоплении. Хрусталик глаза обеспечивается энергией за счет анаэробного гликолиза. Анаэробным гликолизом называют процесс расщепления глюкозы с образованием в качестве конечного продукта лактата. Этот процесс протекает без использования кислорода и поэтому не зависит от работы митохондриальной дыхательной цепи. АТФ образуется за счёт реакций субстратного фосфорилирования. 1. Лактатдегидрогеназа – оксидоредуктаза, оксидаза |