_Лекция_Определённый интеграл. Определённый интеграл
Скачать 80.97 Kb.
|
Определённый интеграл. Введение понятия определённого интеграла. Пусть на отрезке [a, b] задана непрерывная функция f(x). y M m 0 a xi b x Обозначим m и M наименьшее и наибольшее значение функции на отрезке [a, b] Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками. x0 < x1 < x2 < … < xn Тогда x1 – x0 = x1, x2 – x1 = x2, … ,xn – xn-1 = xn; На каждом из полученных отрезков найдем наименьшее и наибольшее значение функции. [x0, x1] m1, M1; [x1, x2] m2, M2; … [xn-1, xn] mn, Mn. Составим суммы: n = m1x1 + m2x2 + … +mnxn = n = M1x1 + M2x2 + … + Mnxn = Сумма называется нижней интегральной суммой, а сумма – верхней интегральной суммой. Т.к. mi Mi, то n n, а m(b – a) n n M(b – a) Внутри каждого отрезка выберем некоторую точку . x0 < 1 < x1, x1 < < x2, … , xn-1 < < xn. Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b]. Sn = f(1)x1 + f(2)x2 + … + f(n)xn = Тогда можно записать: mixif(i)xiMixi Следовательно, Геометрически это представляется следующим образом: график функции f(x) ограничен сверху описанной ломаной линией, а снизу – вписанной ломаной. Обозначим maxxi – наибольший отрезок разбиения, а minxi – наименьший. Если maxxi 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности. Если , то Определение: Если при любых разбиениях отрезка [a, b] таких, что maxxi 0 и произвольном выборе точек i интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b]. Обозначение : а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования. Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b]. Также верны утверждения: Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке. 15.2. Свойства определенного интеграла. Если f(x) (x) на отрезке [a, b] a < b, то Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то: Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка такая, что Доказательство: В соответствии со свойством 5: т.к. функция f(x) непрерывна на отрезке [a, b], то она принимает на этом отрезке все значения от m до М. Другими словами, существует такое число [a, b], что если и = f(), а a b, тогда . Теорема доказана. 7) Для произвольных чисел a, b, c справедливо равенство: Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов. 8) Обобщенная теорема о среднем. Если функции f(x) и (x) непрерывны на отрезке [a, b], и функция (х) знакопостоянна на нем, то на этом отрезке существует точка , такая, что Теорема Ньютона-Лейбница. Пусть в интеграле нижний предел а = const, а верхний предел b изменяется. Очевидно, что если изменяется верхний предел, то изменяется и значение интеграла. Обозначим = Ф(х). Найдем производную функции Ф(х) по переменному верхнему пределу х. Аналогичную теорему можно доказать для случая переменного нижнего предела. Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл. Теорема: (Теорема Ньютона – Лейбница) Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то это выражение известно под названием формулы Ньютона – Лейбница. Иногда применяют обозначение F(b) – F(a) = F(x) . Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов. Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов. Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования. |