Главная страница
Навигация по странице:

  • 2.6.6.3. Проектування систем штучного освітлення

  • 2.6.6.4. Методи розрахунку штучного освітлення

  • Метод світлового потоку

  • Точковий метод

  • Метод питомої потужності

  • 2.6.7. ЕКСПЛУАТАЦІЯ ОСВІТЛЮВАЛЬНИХ УСТАНОВОК

  • 2.7. ВІБРАЦІЯ 2.7.1. ПАРАМЕТРИ ТА ВИДИ ВІБРАЦІЇ, її ДІЯ НА ОРГАНІЗМ ЛЮДИНИ

  • жидецкий. Основи охорони праці


    Скачать 12.74 Mb.
    НазваниеОснови охорони праці
    Анкоржидецкий.doc
    Дата20.12.2017
    Размер12.74 Mb.
    Формат файлаdoc
    Имя файлажидецкий.doc
    ТипДокументы
    #12269
    страница17 из 41
    1   ...   13   14   15   16   17   18   19   20   ...   41

    2.6.6.2. Світильники

    Світильник — це світловий прилад, що складається із джерела світла (лампи) та освітлювальної арматури (рис. 2.19). Освітлювальна арматура перерозподіляє світловий потік лампи в просторі, або змінює його властивості (наприклад, змінює спектральний склад випромінювання), захищає очі працівника від засліплювальної дії ламп. Окрім того, вона захищає джерело світла від впливу навколишнього пожежо- та вибухонебезпечного чи хімічно активного середовища, механічних ушкоджень, пилу, бруду, атмосферних опадів.

    Світильники відрізняються цілою низкою світлотехнічних та конструктивних характеристик.

    Основними світлотехнічними характеристиками світильників є: світлорозподі-лення, крива сили світла, коефіцієнт корисної дії та захисний кут.

    Рис. 2.19. Світильники:

    а — УПД; б — УПМ-15; е — НСП-07; г — ПО-02 (куля молочного скла); д — типу ВЗГ; е — ЛОУ; ж — ПВЛП

    За світлорозподіленням, що визначається відношенням потоку, випромінювано­го світильником у нижню півсферу до повного світлового потоку (0 = Фн.псв) світильники поділяються на п'ять класів: прямого світла (в > 80%); переважно пря­мого світла (60% < 0< 80%); розсіяного світла (40% < 0<= 60%) переважно відби­того світла (20% < 0 <= 40%); відбитого світла (0<=20%).

    Криві сили світла (КСС) світильників можуть мати різну форму в просторі навколо світлового приладу (рис. 2.20): концентровану (К), глибоку (Г), косинусну (Д), півшироку (Л), широку (Ш), рівномірну (М), синусну (С).

    Коефіцієнт корисної дії (ККД) світильника визначається відношенням світло­вого потоку світильника до світлового потоку встановленої в ньому лампи. Освітлю­вальна арматура поглинає частину світлового по­току, що випромінюється джерелом світла, однак завдяки раціональному перерозподілу світла в необхідному напрямку збільшується освітленість на робочих поверхнях.

    Захисний кут світильника у (рис. 2.21) — кут, утворений горизонталлю, що проходить через нит­ку розжарювання лампи (поверхню люмінесцент­ної лампи) та лінією, яка з'єднує нитку розжарю­вання (поверхню лампи) з протилежним краєм освітлювальної арматури. Захисний кут визначає ступінь захисту очей від впливу яскравих частин джерела світла, тому його величину враховують з поміж інших чинників при визначенні місця та висоти розташування освітлювальних приладів.

    Залежно від конструктивного виконання, що визначає ступінь захисту джерела світла від меха­нічних пошкоджень та впливів зовнішнього сере­довища, світильники можна підрозділити на: відкриті





    (захист відсутній), захищені (пилозахищені, водозахищені — світильники, захищені від попадання в них відповідно часточок пилу різних розмірів або краплин води), непроник­ного виконання (пилонепроникні, водоне­проникні), вибухозахищеного виконання (ви-бухонепроникні, вибухобезпечні, підвищеної надійності проти вибуху). У загальному ви­падку ступінь захисту електрообладнання, у тому числі й світильників, позначається згід­но ГОСТ 14252-80 двома числами після лі­тер IP (International Protektion). Перша цифра визначає ступінь захисту виробу від попадання всередину твердих тіл різних розмірів, зокрема частинок пилу, друга цифра — від попадання води. Ступінь захисту світильника тим вищий, чим більше цифрове позначення, що його визначає.

    За призначенням світильники можуть бути загального та місцевого освітлення.

    2.6.6.3. Проектування систем штучного освітлення

    При проектуванні штучного освітлення необхідно вирішити наступне: вибрати систему освітлення, тип джерела світла, тип світильників, визначити розташування світлових приладів, виконати розрахунки штучного освітлення та визначити потуж­ності світильників та ламп.

    Для всіх виробничих приміщень проектують систему загального чи комбінова­ного освітлення. При виконанні робіт І—IV розрядів рекомендується використову­вати, як правило, комбіновану систему освітлення, оскільки досягнення необхідної освітленості при загальній системі освітлення вимагає великих витрат електричної енергії і є недоцільним. З цієї ж точки зору слід надавати перевагу локалізованому освітленню, в тому числі й в системі комбінованого, дотримуючись при цьому допу­стимих норм нерівномірності освітлення (СНиП ІІ-4-79). Освітленість робочої по­верхні, створювана світильниками загального освітлення в системі комбінованого, повинна складати не менше 10% нормованої для комбінованого освітлення, однак у всіх випадках не менше 150 лк при газорозрядних лампах і 50 лк — при лампах розжарювання.

    З гігієнічної точки зору система загального освітлення більш досконала, оскільки дає можливість більш рівномірно розподілити світлову енергію.

    Вибираючи джерела світла, слід надавати перевагу люмінесцентним лампам, які енергетично більш економічні. Окрім того, вони за спектральними характеристиками максимально наближаються до природного світла, що важливо при використанні су­міщеного освітлення.

    Якщо немає застережень стосовно спектрального складу випромінюваного світ-ла, то найкраще, з економічної точки зору, застосовувати люмінесцентні лампи типу ЛБ, які мають найвищу світловіддачу.

    Для зменшення початкових видатків на освітлювальні установки та витрат на їх експлуатацію слід використовувати лампи більшої потужності. Однак при цьому може погіршитись рівномірність освітлення, оскільки остання обернено пропорційна відстані між джерелами світла.

    В загальному випадку рівномірність освітлення вдається забезпечити тоді, коли відстань між центрами світильників не перевищує подвійної висоти їх встановлен­ня. В той же час висота, на якій встановлюються світильники, залежить від висоти приміщення, потужності лампи, класу світильника і системи освітлення. Найменша висота встановлення над підлогою світильників з числом люмінесцентних ламп до чотирьох — 2,6 м, а при чотирьох і більше — 3,2 м.

    Вибір типу світильників проводиться з урахуванням характеристики примі­щення, для якого проектується освітлення. Для приміщень, стіни та стеля яких мають невисокі відбивальні властивості доцільно застосовувати світильники прямого світла, які, направляючи випромінювання ламп вниз на робочі поверхні, гарантують міні­мальні втрати і найкраще використання світлового потоку. Однак слід мати на увазі, що світильники цього класу створюють різкі падаючі тіні від сторонніх предметів, що необхідно враховувати при їх розташуванні.

    При освітленні виробничих приміщень, стіни та стеля яких мають високі від­бивальні властивості, доцільно використовувати світильники переважно прямого світла. Деяке зменшення частки світлового потоку, що безпосередньо випроміню­ється у нижню півсферу, компенсується покращенням якості освітлення і в той же час мало впливає на енергетичну ефективність освітлювальної установки, оскільки такі світильники мають більш високий ККД в порівнянні з аналогічними світиль­никами прямого світла.

    В адміністративно-конторських приміщеннях доцільно використовувати світиль­ники розсіяного світла, значна частина світлового потоку яких направляється на стіни та стелю і, відбиваючись від них, сприяє усуненню різких тіней, що за характером роботи бажано саме для таких приміщень.

    У високих приміщеннях, доцільно застосовувати світильники з концентрованою чи глибокою КСС, які направляють основну частину світлового потоку безпосередньо на робочі поверхні. В приміщеннях з великою площею та незначною висотою бажа­но застосувати світильники з широкою формою КСС, що дозволяє навіть при значних відстанях між світильниками забезпечити рівномірний розподіл освітленості на робо­чих площинах.

    Невідповідність світлотехнічних характеристик світильника розмірам та харак­теру оброблення освітлюваного приміщення викликає зростання встановленої потуж­ності, зниження якості освітлення. В свою чергу, невідповідність конструктивного виконання світильника умовам середовища в приміщенні знижує довговічність і надійність роботи освітлювальної установки (агресивне, вологе, запилене середови­ще), а в окремих випадках може спричинити пожежу чи вибух. Тому світильники повинні бути з необхідним ступенем захисту від умов зовнішнього середовища в місцях встановлення. Особливо жорсткі вимоги щодо цього стосуються світильників, які встановлюються у вибухо- та пожежонебезпечних приміщеннях.

    2.6.6.4. Методи розрахунку штучного освітлення

    Для розрахунку штучного освітлення використовують, в основному, три методи: світлового потоку (коефіцієнта використання), точковий та питомої потужності.

    Метод світлового потоку призначений для розрахунку загального рівномірно­го освітлення горизонтальних поверхонь. Цей метод дозволяє врахувати як прямий світловий потік, так і відбитий від стін та стелі. Світловий потік лампи Ф визначають за формулою:

    Фл= ESk3Z/Nnŋ, (2.20)

    де Е — нормована освітленість, лк;

    S— площа освітлюваного приміщеня, м2;

    k— коефіцієнт запасу, що враховує зниження освітленості в результаті за­бруднення та старіння ламп (k3= 1,3—1,8);

    Z — коефіцієнт нерівномірності освітлення (Z = 1,1 —1,1,5);

    N — кількість світильників;

    п — кількість ламп у світильнику;

    ŋ— коефіцієнт використання світлового потоку.

    Коефіцієнт ŋвизначається за світлотехнічними таблицями залежно від показ­ника приміщення і, коефіцієнтів відбиття стін та стелі. Показник приміщення і зна­ходять за формулою:
    і = ab / hp(a+b), (2.21)

    де аіЬ — довжина і ширина приміщення, м

    h— висота світильника над робочою поверхнею, м.

    Порахувавши світловий потік лампи Фл, за таблицею вибирають найближчу ста­ндартну лампу і визначають електричну потужність всієї освітлювальної установки.



    Точковий метод призначений для розрахунку локалізованого та комбіновано­го освітлення, а також освітлення похилих площин. В основу точкового методу покла­дено рівняння:

    (2.22)

    де — сила світла в напрямку від джерела на задану точку робочої поверхні, кд\ а — кут' падіння світлових променів, тобто кут між променем та перпендикуляром до освітлюваної поверхні; г — відстань від світильника до заданої точки.

    Для практичного використання в формулу підставляють коефіцієнт запасу kз та значення

    r = hр/cosа (рис. 2.22), тоді

    (2.23)
    Величини сили світла / наводяться в світлотехнічних довідниках.

    Метод питомої потужності вважається найбільш простим, однак і найменш точним, тому його застосовують лише при наближених розрахунках. Цей метод дозволяє визначити потужність кожного світильника (лампи) Рсв, Вт для створення в приміщенні нормованої освітленості

    Рсв = pS/N, (2.24)

    де р — питома потужність, Вт/м2(приймається за довідниками для приміщень даної галузі);

    S — площа приміщення, м2;

    N — кількість світильників у приміщенні.

    2.6.7. ЕКСПЛУАТАЦІЯ ОСВІТЛЮВАЛЬНИХ УСТАНОВОК

    Надійність та ефективність природного і штучного освітлення залежить від своєчасності і ретельності їх обслуговування. Забруднення скла світлових отворів, ламп та світильників може знизити освітленість приміщень в 1,5—2 рази. Тому вікна необхідно мити не рідше двох разів у рік для приміщень з незначним виділен­ням пилу і не рідше чотирьох разів — при значному виділенні пилу. Періодичність чищення світильників — 4—12 разів на рік (залежно від характеру запиленості виробничих приміщень).

    В світильниках з люмінесцентними лампами необхідно також слідкувати за справністю схем включення (не допускати миготіння ламп та шуму дроселів), забез­печувати безпеку та зручність експлуатації і обслуговування світильників, а також своєчасно замінювати перегорілі лампи і лампи, що слабо світяться. Замінені люміне­сцентні лампи зберігаються на складах і, якщо можливо; вивозяться на спеціальні підприємства для вилучення наявної в них ртуті.

    Періодично, не рідше одного разу на рік, необхідно перевіряти рівень освітле­ності в контрольних місцях виробничого приміщення. Основний прилад для вимірю­вання освітленості — люксметр.

    2.7. ВІБРАЦІЯ 2.7.1. ПАРАМЕТРИ ТА ВИДИ ВІБРАЦІЇ, її ДІЯ НА ОРГАНІЗМ ЛЮДИНИ

    Під вібрацією розуміють механічні коливання твердого тіла. Найпростішим видом таких коливань є гармонійні коливання, при яких відбувається почергове на­ростання та спадання в часі (за синусоїдальним законом) значень рухомої точки чи механічної системи.

    Вібрації виникають, зазвичай, при роботі машин та механізмів, які мають неврів-новажені і незбалансовані частини, що обертаються чи здійснюють зворотно-посту­пальний рух. До такого устаткування належать оброблювальні верстати, штампувальні та ковальські молоти, електро- та пневмоперфоратори, електроприводи, насосні установки, компресори, механізований інструмент та ін. При роботі даного устатку­вання вібрація відіграє негативну роль. У той же час, вібрацію застосовують і для інтенсифікації виробничих процесів, наприклад, при ущільнені бетонних сумішей, роздрібнюванні та сортуванні інертних матеріалів, розвантажуванні та сортуванні сипучих матеріалів.

    Вібрація характеризується абсолютними та відносними параметрами. До основ­них абсолютних параметрів належать: вібропереміщення (s) — миттєве значення кожної з координат, які описують положення тіла, чи матеріальної точки під час вібрації; амплітуда вібропереміщення (А) — найбільше відхилення точки, яка колива­ється з певною частотою, від положення рівноваги, м; віброшвидкість (v) — кінема­тичний параметр, що дорівнює швидкості переміщення (перша похідна віброперемі­щення) точки, яка коливається з певною частотою, м/с; віброприскорення (а) — кінематичний параметр, що дорівнює прискоренню переміщення (друга похідна віб­ропереміщення) точки, яка коливається з певною частотою, м/с2; період вібрації (Т) — найменший інтервал часу, через який під час періодичної вібрації повторюється кожне значення величини, яка характеризує вібрацію, с; частота вібрації (/) - вели­чина, обернено пропорційна періоду вібрації, яка показує кількість коливань за одини­цю часу точки під час вібрації, Гц. Оскільки абсолютні параметри, що характеризують вібрацію змінюються в широких межах, то на практиці частіше використовують відносні параметри — рівні, які визначаються відносно опорного (порогового) зна­чення відповідного параметра і вимірюються в децибелах (дБ). Стандартні опорні значення наступні: амплітуди вібропереміщення А0 = 8 • 10 -12м; віброшвидкості v0 = 5 • 10 -8 м/с; віброприскорення а0= 3 • 10 -4 м/с2. Найчастіше для оцінки вібрації використовують логарифмічний рівень віброшвидкості Lv, який визначається за фор­мулою:

    Lv = 201gv/v0 (дБ), (2.25)

    де v— абсолютне значення віброшвидкості, м/с; V0— опорне значення віброшвидкості, м/с.

    За способом передачі на тіло людини розрізняють загальну та місцеву (локаль­ну) вібрацію. Загальна вібрація передається на тіло людини, яка сидить або стоїть, переважно через опорні поверхні — сидіння, підлогу. Локальна вібрація передається через руки працюючих при контакті з ручним механізованим інструментом, органа­ми керування машинами та обладнанням, деталями, які обробляються і т. п. Можлива також одночасна дія загальної та локальної вібрації. Наприклад, при роботі на дорож­ньо-будівельних машинах на руки передається локальна вібрація від органів керу­вання, а на все тіло — від машини через сидіння.

    Залежно від джерела виникнення загальна вібрація підрозділяється на: транс­портну, яка діє на операторів (водіїв) транспортних засобів (автомобілі, трактори); транспортно-технологічну, яка діє на операторів машини з обмеженою рухливістю та таких, що рухаються тільки по. спеціально підготовлених поверхнях виробничих приміщень, промислових майданчиків та гірничих виробок (екскаватори, промислові та будівельні крани, автонавантажувачі, авто- та електрокари); технологічну, яка діє на операторів стаціонарних машин або передається на робочі місця, що не мають джерел вібрації (метало- і деревооброблювальні верстати, ковальсько-пресувальне устаткування, насосні станції, бурові вишки).

    Загальну технологічну вібрацію за місцем дії поділяють на такі типи:

    • на постійних робочих місцях виробничих приміщень підприємств;

    • на робочих місцях складів, їдалень, побутових, чергових та інших виробничих приміщень, де немає джерел вібрації;

    • на робочих місцях заводоуправлінь, конструкторських бюро, лабораторій, об­числювальних центрів, медпунктів, конторських приміщень, робочих кімнат та інших приміщень для працівників розумової праці.

    За джерелом виникнення локальну вібрацію поділяють на таку, що передається від:

    • ручних машин або ручного механізованого інструменту, органів керування машинами та устаткуванням;

    • ручних інструментів без двигунів (наприклад, рихтувальні молотки) та дета­лей, які обробляються.

    За часовими характеристиками загальні та локальні вібрації поділяються на: постійні, для яких величина віброприскорення чи віброшвидкості змінюється менше ніж у два рази (менше 6 дБ) за робочу зміну; непостійні, для яких вищеперераховані параметри вібрації змінюються не менше ніж у два рази (6 дБ і більше) за робочу зміну. В свою чергу, непостійні вібрації поділяються на:

    • коливні, рівні яких безперервно змінюються в часі;

    • переривчасті, коли контакт з вібрацією в процесі роботи переривається,
      причому довжина інтервалів, під час яких має місце контакт, становить більше 1с;

    • імпульсні, що складаються з одного або кількох вібраційних впливів (наприк­лад, ударів), кожен довжиною менше ніж 1 с, при частоті їх дії менше ніж 5,6 Гц.

    Класифікація виробничої вібрації наведена на рис. 2.23.

    При дії вібрації на організм людини спостерігаються зміни в діяльності серце­вої та нервової систем, спазм судин, зміни у суглобах, що призводить до обмеження їх рухомості. При нетривалій дії вібрації працівник передчасно втомлюється, при цьому його продуктивність праці знижується. Тривала дія вібрації може спричини­ти професійне захворювання — вібраційну хворобу. Під час розвитку цієї хвороби з'являється оніміння, відчуття повзання мурашок, біль у суглобах тощо. Слід зазна­чити, що ефективне лікування вібраційної хвороби можливе лише на ранній стадії її розвитку. Особливо небезпечна вібрація робочих місць з частотою, яка є резонанс­ною з частотою коливання окремих органів чи частин тіла людини, що може призвести до їх механічного пошкодження. Для більшості внутрішніх органів людини частота власних коливань становить 6—12 Гц. Ступінь та характер впливу вібрації на організм людини залежить не лише від виду та параметрів, а також і від напрямку її дії. Тому вібрація поділяється залежно від осей ортогональної системи координат X, Y, Z, вздовж яких вона діє (рис. 2.24). Особливо чутливий організм людини до вертикальної загальної вібрації (вздовж осі Z), коли коливання переда­ються від ніг до голови.



    1   ...   13   14   15   16   17   18   19   20   ...   41


    написать администратору сайта