Основы технических измерений 1 Понятие об измерениях. Единицы измерений Измерение
Скачать 256.7 Kb.
|
Основы технических измерений 1.1 Понятие об измерениях. Единицы измерений Измерение — нахождение физической величины опытным путем с помощью научных знаний. Они служат для обеспечения качества изделий, взаимозаменяемости деталей и узлов, совершенствования технологии производства, его автоматизации и стандартизации. С развитием науки и техники измерения все усложняются, повышается их точность, возрастает количество. Потребность в обширной информации, в определении новых параметров ускоряет создание новых измерительных средств и увеличение их выпуска. Можно выделить три главные функции измерений в народном хозяйстве: учет продукции народного хозяйства; научные исследования, испытания и контроль продукции; контроль и регулирование технологических процессов. Измерения по способу получения числового значения делятся на прямые, косвенные, совокупные, совместные, абсолютные и относительные. Прямое — это измерение, при котором искомое значение величины находят непосредственно из опытных данных (измерение длины линейкой, температуры термометром). Косвенное измерение характеризуется тем, что искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям (нахождение объема цилиндра по результатам измерения его диаметра и высоты). Совокупные измерения представляют собой одновременные измерения нескольких одноименных величин, при которых искомые их значения находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (определение Массы отдельных гирь набора по известной одной из Них и по результатам прямых сравнений масс различных сочетаний гирь). Совместные — это проводимые одновременно измерения двух или нескольких одноименных величин для нахождения зависимости между ними (определение зависимости длины тела от изменения температуры). Абсолютное измерение основано на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Относительное — это измерение отношения величины к одноименной величине, играющей роль единицы, или изменения величины по отношению к одноименной величине, принимаемой за исходную. Контроль — это процесс получения и обработки информации об объекте с целью определения его годности. Для измерения физических величин очень важно выбрать единицы их измерения. Единица измерения физической величины представляет собой величину, принятую по соглашению за основание для количественной оценки величин, качественно однородных с нею. Основное уравнение измерения имеет вид где Q — измеряемая величина; q — числовое значение измеряемой величины в принятых единицах; И — единица измерения. Часто вместо определения числового значения величины проверяют, находится ли значение этой величины : в установленных пределах. Раньше единицы измерения физических величин выбирали произвольно и независимо одну от другой. Позже было установлено, что разумнее выбирать некоторые единицы независимо, а остальные устанавливать на основании определенных закономерных связей между физическими телами. Основными называются единицы измерения, которые принимают независимо одну от другой. Производными называют единицы, которые определяют с помощью уравнений. Система единиц измерения — это совокупность основных и производных единиц. Одной из первоначальных систем была система МКС с основными единицами: метр, килограмм, секунда. Кроме этой системы, существовали МКСА (добавлена единица силы тока — ампер), МКСГ (добавлена единица температуры — градус). Неудобства возникали из-за пересчетов при переходе от одной системы к другой. В 1960 г. на XI Генеральной конференции по мерам и весам была принята Международная система единиц измерения SI (система интернациональная); русское обозначение СИ. Система СИ содержит семь основных и множество производных единиц. Основные единицы: длины — метр (латинское обозначение m, русское—м); массы — килограмм (kg, кг); времени — секунда (s, с); силы электрического тока — ампер (A, А); термодинамической температуры — градус Кельвина (К, К); силы света— кандела (cd, кд); количества вещества — моль (mol, моль). Метрология представляет собой науку об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности. Слово «метрология» в переводе с греческого языка означает учение о мерах. К задачам современной метрологии относятся следующие: установление и воспроизведение в виде эталонов единиц измерений; создание средств измерений; разработка методов измерений и повышение их точности; усовершенствование способов передачи единицы измерений от эталона к изделию. Научно-технический прогресс в метрологии проявляется в освоении измерения новых величин и расширении диапазонов измерения всех величин. 1.2 Классификация методов и средств измерений Метод измерений — это совокупность приемов использования принципов и средств измерений. Методы и средства измерений выбирают с учетом множества факторов: является ли измеряемая величина постоянной или переменной, случайной или неслучайной, зависимой или независимой, движущейся или неподвижной. Существуют следующие методы измерения: непосредственной оценки, сравнения с мерой, противопоставления, дифференциальный, нулевой, замещения и совпадений (ГОСТ 16263—70). Метод непосредственной оценки — метод, при котором значение величины определяют непосредственно по отчетному устройству измерительного прибора прямого действия. Метод сравнения с мерой заключается в том, измеряемую величину сравнивают с величиной, воспроизводимой мерой. Метод противопоставления — сравнение с мерой, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения. С помощью прибора устанавливают соотношение между этими величинами. Дифференциальный метод основан на сравнении с мерой, при котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой. Нулевой метод — сравнение с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Метод замещения — это метод сравнения с мерой, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Метод совпадения представляет собой сравнение с мерой, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой измеряют, используя совпадение отметок шкал или периодических сигналов. Средства измерений в соответствии с Государственной системой измерений (ГСИ) делятся на следующие группы. Эталоны — меры и приборы, предназначенные для воспроизведения и хранения какой-либо величины. К ним относятся государственный эталон метра, этапные приборы концевых мер длины. Образцовые меры и приборы предназначены для проверки и градуировки лабораторных и заводских мер. Производственные меры и приборы служат для проверки изделий в производственных условиях. По характеру использования в производственном процессе средства измерений делятся на меры, измерительные приборы (инструменты) и калибры. 1.3. Метрологические показатели средств измерений Диапазон показаний — это область значений шкалы, ограниченная конечным и начальным значениями школы. Диапазон измерений — область значений измеряемой величины, для которой нормированы допускаемые погрешности средства измерений. Цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы, Точность измерений — качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. Чувствительность — отношение изменения сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины. Погрешность измерения — отклонение результата измерения от истинного значения измеряемой величины. При конструировании средств измерений стремятся к тому, чтобы погрешность измерения была наименьшей, а другие метрологические показатели средств измерений находились в заданных пределах. Этого достигают сочетанием больших передаточных отношений с простотой и технологичностью конструкции. Необходимо также, чтобы по возможности ось шкалы прибора и контролируемый размер проверяемой детали располагались на одной прямой. Если это условие не выдерживается, то перекос и непараллельность направляющих измерительного прибора обусловливают значительные погрешности измерения. 1.4 Погрешности измерений Если истинное значение величины обозначить через Q, погрешность через , то результат измерения у будет равен Погрешность измерения выражается либо в единицах измеряемой величины (абсолютная погрешность), либо в долях или процентах от значения измеряемой величины (относительная погрешность). В зависимости характера проявления погрешности делятся на систематические и случайные. Систематическая погрешность — это составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторныхизмерениях одной и той же величины. Косновным причинам возникновения систематических погрешностей относятся погрешности инструмента или метода измерений, индивидуальные особенности зкспериментатора. Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности не могут быть исключены из результата измерения. Однако их влияние может быть уменьшено при обработке результатов измерений. Значения случайных погрешностей зависят от точности прибора и опытности экспериментатора. В механических приборах появление случайных погрешностей вызвано зазорами в звеньях кинематической цепи механизма прибора и другими подобными причинами. Значения случайных погрешностей заранее установить нельзя, но можно определить вероятность их появления. Для этого надо знать закон распределения случайных погрешностей. Числовые характеристики погрешностей измерения принято выражать средним арифметическим , средним квадратическим , предельным lim значениями случайных погрешностей. Среднее арифметическое значение результатов ряда наблюдений определяется уравнением где xi — значения отдельных случайных величин; пik — число появлений случайной величины в данном интервале; N — общее число случайных величин; k — число интервалов группирования. Средняя квадратическая погрешность ряда измерений равна Предельная погрешность составляет Погрешности более ±3 не учитывают и считают грубыми ошибками. 1.5. Государственная система обеспечения единства измерений Для обеспечения принципа взаимозаменяемости деталей необходимо, чтобы все предприятия страны имели единые средства измерений. С этой целью в СССР введена Государственная система обеспечения единства измерений. Согласно ГОСТ 8.020—75, за международный метр принята длина, равная 1 650 763,73 длины волны в вакууме излучения, соответствующего переходу между уровнями 2р10и 5о5 атома криптона-86. Точность воспроизведения единицы длины составляет 0,002 мкм. Передача основной единицы от эталона к детали осуществляется в соответствии с поверочной схемой (рис. 50). Согласно этой схеме, размер Государственного эталона метра передается на рабочие эталоны, представляющие собой концевые меры длины, выполненные из кварца. Их хранят в центральных метрологических институтах и используют для проверки образцовых мер 1-го разряда. Образцовые меры 2-го разряда проверяются по мерам 1-го разряда, меры 3-го разряда — по мерам 2-го разряда и т. д. От образцовых концевых мер размер единицы длины передается на рабочие измерительные инструменты и приборы. Государственный эталон метра Р абочий эталон Образцовые концевые меры 1-го разряда О б разцовые концевые меры 2-го разряда О б разцовые концевые меры 3-го разряда О б разцовые концевые меры 4-го разряда Образцовые концевые меры 5-го разряда И змерительные инструменты и приборы Рис. 50. Схемы передачи размера от эталона к изделию. Стандартом установлен порядок проведения поверки измерительных средств. Поверке подлежат все измерительные средства предприятий. Периодичность поверки определяется соответствующими инструкциями. Так, поверка штангенинструментов, микрометрических и индикаторных инструментов и приборов проводится один раз в год. Сроки поверки заносят в специальные графики, которые утверждаются руководителем предприятия. Поверку средств измерений проводят в центральных измерительных лабораториях предприятий и специальных метрологических лабораториях. Результаты поверки записывают в специальные паспорта или аттестаты инструментов и приборов. 1.6. Меры линейных и угловых величин Мера представляет собой средство измерений, предназначенное для воспроизведения величины одногоили нескольких размеров с необходимой точностью. Различают однозначные, многозначные меры и набор мер. Однозначные меры воспроизводят физическую величину одного размера. Многозначные меры воспроизводят несколько одноименных величин различного размера (масштабные линейки). Набор мер — это специально подобранный комплект мер, применяемых не только отдельно, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера. По конструктивным признакам меры делятся на штриховые и концевые. Штриховые меры представляют собой пластины или диски, на плоскостях которых нанесены штрихи. Размер в штриховых мерах определяется расстоянием между серединами штрихов. К штриховым мерам длины относятся измерительные линейки, складные метры, рулетки. Измерительная линейка выполнена в виде стальной ленты, на поверхности которой нанесены одна или две шкалы с ценой деления 0,5 или 1,0 мм. Рулетка — представляет собой стальную ленту, намотанную на ось цилиндрического футляра. На поверхности ленты нанесена штриховая шкала. Рулетки изготавливают длиной 1, 2, 5, 10, 20, 30 и 50 м. Их применяют в различных отраслях народного хозяйства, где не требуется высокой точности измерения. Плоскопараллельные концевые меры длины выпускают в виде цилиндрических стержней или прямоугольных параллелепипедов-плиток, длина которых определяется кратчайшим расстоянием между измерительными поверхностями. Плавное их свойство — притираемость. Притираемость мер объясняется сцеплением молекул покрывающей меры смазки. Сила сцепления имеет наибольшее значение при толщине пленки смазки не более 0,02 мм. Абсолютно обезжиренные меры или с толстым слоем смазки не притираются. За основной размер концевой меры принята ее срединная длина, т. е. длина перпендикуляра, опущенного из середины верхней измерительной поверхности на плоскость, к которой мера притерта нижней измерительной поверхностью. Наборы мер комплектуют из концевых мер. Основное требование к наборам: любое значение длины в заданных пределах должно воспроизводиться с помощью не более четырех-пяти мер, ибо с увеличением числа мер увеличивается погрешность блока. Так, набор № 1 из 87 концевых мер длиной от 1,005 до 100 мм позволяет воспроизводить длину от 1,005 до 340 мм с помощью не более чем четырех плиток. Применяют также микронный набор из 9 мер размерами 1,001; 1,002; ...; 1,009 мм. Выпускают долемикронные концевые меры от 2 до 2,001 мм через 0,0001 мм для поверки особо точных измерительных приборов. На каждой концевой мере гравируют ее номинальный размер. Номинальный размер мер до 5,5 мм наносят на одну из измерительных поверхностей, свыше 5,5 мм — на боковую нерабочую поверхность. Блок концевых мер составляют в такой последовательности. Сначала подбирают меньшую плитку, размер которой содержит последний десятичный знак составляемого размера; затем плитку, размер которой содержит следующий десятичный знак, и т. д. Например, требуется собрать блок (рис. 51) концевых мер размером 34,895 мм: 1-я плитка — 1,005, остаток 33,89 мм; 2-я плитка — 1,39, остаток 32,5 мм; 3-я плитка — 2,5, остаток 30 мм; 4-я плитка — 30. Таким образом, блок будет состоять из четырех концевых мер размерами 1,005+1,39 + 2,5 + 30 = 34,895 мм. П Рис.51. Блок концевых мер осле определения размеров концевые меры притирают, а затем притирают плитки в блок. Сначала к самой большей мере притирают вторую по размеру плитку, потом третью и т. д. Меньшую плитку накладывают на край большей (примерно на 1/3 длины) и с небольшим нажимом зигзагообразным движением вдоль длинного ребра надвигают верхнюю плитку на нижнюю до совпадения измерительных поверхностей. Концевые меры выпускают четырех классов точности: 0, 1, 2 и 3 (в порядке убывания точности). Для мер, находящихся в эксплуатации, дополнительно установлены 4-й и 5-й классы точности. Плоскопараллельные концевые меры длины применяют обычно тогда, когда требуется получить высокую точность измерений. Область применения концевых мер может быть расширена при помощи различных приспособлений (державки, центры и т. п.). |