Главная страница
Навигация по странице:

  • 3.1.2.1. Два типа хроматина

  • ответы по гистологии(Галка Яна). Ответ 14! Немембранные органеллы. Рибосомы. Строение, химический состав, функции. Понятие о полисомах. Роль свободных и связанных с мембранами эндоплазматической сети рибосом в биосинтезе клеточных белков. Рибосомы


    Скачать 275.25 Kb.
    НазваниеОтвет 14! Немембранные органеллы. Рибосомы. Строение, химический состав, функции. Понятие о полисомах. Роль свободных и связанных с мембранами эндоплазматической сети рибосом в биосинтезе клеточных белков. Рибосомы
    Дата29.03.2022
    Размер275.25 Kb.
    Формат файлаdocx
    Имя файлаответы по гистологии(Галка Яна).docx
    ТипДокументы
    #425751
    страница2 из 4
    1   2   3   4

    ядерно-цитоплазматическое отношение


    Отношение объемов ядра и цитоплазмы; согласно гипотезе Р.Гертвига, выдвинутой в 1908, оно является определяющим в индуцировании клеточного деления, которое происходит после достижения этим показателем некоего критического значения (в интерфазе рост клетки при практически сохраняющемся объеме ядра ведет к постоянному снижению Я.-ц.о.).

    1.3. ЯДРЫШКИ

    Согласно электронно-микроскопическим исследованиям, ядрышки лишены какой-либо мембраны. Вещество их в основном состоит из субмикроскопических нитей и нуклеоплазмы. Ядрышки можно наблюдать, применяя специальные методы окрашивания, а также в ядрах некоторых живых клеток при использовании фазово-контрастного микроскопа или темнопольного конденсора.
    На электронных микрофотографиях в ядрышках нередко видны две зоны: центральная - гомогенная и периферическая - построенная из гранулированных нитей. Эти гранулы напоминают рибосомы, но отличаются от них меньшей плотностью и величиной. Ядрышки богаты белками (80-85 %) и РНК (около 15 %) и служат активными центрами синтеза рибосомальной РНК. В соответствии с этим главной составной частью ядрышка является ядрышковая ДНК, которая принадлежит организатору ядрышек одной из хромосом.
    содержание РНК заметно колеблется, в зависимости от интенсивности обмена веществ в ядре и цитоплазме. Ядрышки не присутствуют в ядре постоянно: они возникают в средней телофазе митоза и исчезают в конце профазы. Полагают, что по мере затухания синтеза РНК в средней профазе происходят разрыхление ядрышка и выход в цитоплазму образовавшихся в нуклеоплазме субчастиц рибосом. При исчезновении ядрышка во время митоза его белки, ДНК и РНК, становятся основой матрикса хромосом, а в дальнейшем из материала старого ядрышка формируется новое.
    Установлена связь ядрышек с хромосомами, имеющими спутников, поэтому число ядрышек соответствует числу спутничных хромосом. Нуклеолонемы сохраняются на протяжении всего цикла клеточного деления и в телофазе переходят от хромосом к новому ядрышку.

    1.4. ЯДЕРНАЯ МЕМБРАНА

    Неделящееся клеточное ядро заключено в плотную и упругую оболочку, которая растворяется и вновь восстанавливается в процессе деления клетки. Это образование отчетливо видно лишь на некоторых объектах, например у гигантских ядер слизевых клеток алоэ толщина мембраны достигает 1 мкм. В световом микроскопе структуру ядерной оболочки удается наблюдать лишь у плазмолизированных клеток, фиксированных и окрашенных.
    Детальное изучение ядерной мембраны стало возможным с появлением электронной микроскопии. Исследования показали, что наличие ядерной оболочки характерно для всех эукариотических клеток. Она состоит из двух элементарных мембран толщиной 6-8 нм каждая - внешней и внутренней, между которыми находится перинуклеарное пространство шириной от 20 до 60 нм. Оно заполнено энхилемой - сывороткообразной жидкостью с низкой электронной плотностью.
    Итак, ядерная мембрана представляет собой полый мешок, отделяющий содержимое ядра от цитоплазмы, и состоит из двух слоев: внешний слой ограничивает перинуклеарное пространство снаружи, т. е. со стороны цитоплазмы, внутренний - изнутри, т. е. со стороны ядра. Из всех внутриклеточных мембранных компонентов подобным строением мембран обладают ядро, митохондрии и пластиды.
    Морфологическое строение каждого слоя такое же, как и внутренних мембран цитоплазмы. Отличительная особенность ядерной оболочки - наличие в ней пор - округлых перфораций, образующихся в местах слияния внешней и внутренней ядерных мембран. Размеры пор довольно стабильны (30-100 нм в диаметре), в то же время их число изменчиво и зависит от функциональной активности клетки: чем активнее идут в ней синтетические процессы, тем больше пор приходится на единицу поверхности клеточного ядра.
    Обнаружено, что количество пор увеличивается в период реконструкции и роста ядра, а также при репликации ДНК. Одно из крупнейших открытий, сделанных с помощью электронной микроскопии, - обнаружение тесной взаимосвязи между ядерной оболочкой и эндоплазматической сетью. Поскольку ядерная оболочка и тяжи эндоплазматической сети во многих местах сообщаются между собой, перинуклеарное пространство должно содержать ту же сывороткообразную жидкость, что и полости между мембранами эндоплазматической сети.
    При оценке функциональной роли ядерной оболочки большое значение приобретает вопрос о ее проницаемости, обусловливающей обменные процессы между ядром и цитоплазмой в связи с передачей наследственной информации. Для правильного понимания ядерно-цитоплазматических взаимодействий важно знать, насколько ядерная оболочка проницаема для белков и других метаболитов. Опыты показывают, что ядерная оболочка легко проницаема для относительно крупных молекул. Так, рибонуклеаза - фермент, гидролизующий рибонуклеиновую кислоту без выделения свободной фосфорной кислоты, - имеет молекулярную массу около 13000 и очень быстро проникает в ядро.
    Даже в корешках, фиксированных видоизмененным методом замораживания, можно наблюдать, как окрашивание ядрышек подавляется во всех клетках уже через 1 ч после обработки рибонуклеазой.

    1.5. КАРИОПЛАЗМА

    Кариоплазма (ядерный сок, нуклеоплазма) - основная внутренняя среда ядра, она занимает все пространство между ядрышком, хроматином, мембранами, всевозможными включениями и другими структурами. Кариоплазма под электронным микроскопом имеет вид гомогенной или мелкозернистой массы с низкой электронной плотностью. В ней во взвешенном состоянии находятся рибосомы, микротельца, глобулины и различные продукты метаболизма.
    Вязкость ядерного сока примерно такая же, как вязкость основного вещества цитоплазмы. Кислотность ядерного сока, определенная путем микроинъекции индикаторов в ядро, оказалась несколько выше, чем у цитоплазмы.
    Кроме того, в ядерном соке содержатся ферменты, участвующие в синтезе нуклеиновых кислот в ядре и рибосомы. Ядерный сок не окрашивается основными красителями, поэтому его называют ахроматиновым веществом, или кариолимфой, в отличие от участков, способных окрашиваться, - хроматина.

    1.6. ХРОМАТИН

    Термин «хромосома» используется по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информации вируса, прокариота или эукариотической клетки. Однако первоначально слово «хромосома» (т. е. «окрашенное тело») использовалось в другом смысле, - для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем.
    Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.
    Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

    Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60 % белка, 35 % ДНК и, вероятно, 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

    Ядерная оболочка состоит из внешней ядерной мембраны и внутренней мембраны, которые разделяются перинуклеарным пространством или цистерной ядерной оболочки. В ядерной оболочке содержатся ядерные поры. Число ядерных пор зависит от метаболической активности клетки: чем она выше, тем больше пор на единицу поверхности клеточного ядра.

    Основные функции ядерной оболочки заключаются в том, что она отделяет содержимое ядра от цитоплазмы, ограничивает доступ в ядро крупных агрегатов биополимеров, регулирует транспорт макромолекул между ядром и цитоплазмой, участвует в фиксации хромосомного материала в ядре. Таким образом, ядро является носителем генетического материала и местом, где осуществляется его функционирование и воспроизведение.

    Функции и строение цитоплазматической мембраны


    Элементарная мембрана состоит из бислоя липидов в комплексе с белками (гликопротеины: белки + углеводы, липопротеины: жиры + белки). Среди липидов можно выделить фосфолипиды, холестерин, гликолипиды (углеводы + жиры), липопротеины. Каждая молекула жира имеет полярную гидрофильную головку и неполярный гидрофобный хвост. При этом молекулы ориентированы так, что головки обращены кнаружи и внутрь клетки, а неполярные хвосты – внутрь самой мембраны. Этим достигается избирательная проницаемость для веществ, поступающих в клетку.

    Выделяют периферические белки (они расположены только по внутренней или наружной поверхности мембраны), интегральные (они прочно встроены в мембрану, погружены в нее, способны менять свое положение в зависимости от состояния клетки). Функции мембранных белков: рецепторная, структурная (поддерживают форму клетки), ферментативная, адгезивная, антигенная, транспортная.

    Схема строения элементарной мембраны жидкостно-мозаич-ная: жиры составляют жидкокристаллический каркас, а белки мозаично встроены в него и могут менять свое положение.

    Важнейшая функция: способствует компартментации – подразделению содержимого клетки на отдельные ячейки, отличающиеся деталями химического или ферментного состава. Этим достигается высокая упорядоченность внутреннего содержимого любой эукариотической клетки. Компартментация способствует пространственному разделению процессов, протекающих в клетке. Отдельный компартмент (ячейка) представлен какой-либо мембранной органеллой (например, лизосомой) или ее частью (кристами, отграниченными внутренней мембраной митохондрий).

    Другие функции:

    1) барьерная (отграничение внутреннего содержимого клетки);

    2) структурная (придание определенной формы клеткам в соответствии с выполняемыми функциями);

    3) защитная (за счет избирательной проницаемости, рецепции и антигенности мембраны);

    4) регуляторная (регуляция избирательной проницаемости для различных веществ (пассивный транспорт без затраты энергии по законам диффузии или осмоса и активный транспорт с затратой энергии путем пиноцитоза, эндо– и экзоцито-за, работы натрий-калиевого насоса, фагоцитоза));

    5) адгезивная функция (все клетки связаны между собой посредством специфических контактов (плотных и неплотных));

    6) рецепторная (за счет работы периферических белков мембраны). Существуют неспецифические рецепторы, которые воспринимают несколько раздражителей (например, холодовые и тепловые терморецепторы), и специфические, которые воспринимают только один раздражитель (рецепторы световос-принимающей системы глаза);

    7) электрогенная (изменение электрического потенциала поверхности клетки за счет перераспределения ионов калия и натрия (мембранный потенциал нервных клеток составляет 90 мВ));

    8) антигенная: связана с гликопротеинами и полисахаридами мембраны. На поверхности каждой клетки имеются белковые молекулы, которые специфичны только для данного вида клеток. С их помощью иммунная системы способна различать свои и чужие клетки.

    Область между двумя мембранами ядерной оболочки называется перинуклеарным пространством. Перинуклеарное пространство связывает ядро с полостями других органоидов, в первую очередь, с эндоплазматической сетью.

    Поры окружены большими кольцевыми структурами, называемыми поровыми комплексами (их внутренний диаметр составляет приблизительно 80 нм, а мол. масса -50-100 млн. Каждый комплекс образован набором больших белковых гранул, сгруппированных в октагональную структуру ( рис. 8-20 ,).

    Поровой комплекс пронизывает двойную мембрану, связывая по окружности поры липидный бислой внутренней и внешней мембран в единое целое ( рис. 8-20, справа). Несмотря на эту непрерывность, которая должна была бы обеспечивать диффузию компонентов между внешней и внутренней мембранами, они остаются химически разными.

    Ответ 20! Ядро клетки. Хроматин. Строение и химический состав. Хроматиновые фибриллы, перихроматиновые фибриллы, перихроматиновые и интерхроматиновые гранулы. Понятие о нуклеосомах. Понятие о деконденсированном и конденсированном хроматине, степень их участия в синтетических процессах. Половой хроматин. Ядрышко как производное хромосом, их количество, размер, химический состав и строение. Понятие о ядрышковом организаторе.

    Ядро (лат. nucleus) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация генетической информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

    1.6. ХРОМАТИН

    Термин «хромосома» используется по отношению к молекуле нуклеиновой кислоты, которая представляет собой хранилище генетической информации вируса, прокариота или эукариотической клетки. Однако первоначально слово «хромосома» (т. е. «окрашенное тело») использовалось в другом смысле, - для обозначения густо окрашенных образований в эукариотических ядрах, которые можно было наблюдать в световой микроскоп после обработки клеток красителем.
    Эукариотические хромосомы, в изначальном смысле этого слова, выглядят как резко очерченные структуры только непосредственно до и во время митоза - процесса деления ядра в соматических клетках. В покоящихся, неделящихся эукариотических клетках хромосомный материал, называемый хроматином, выглядит нечетко и как бы беспорядочно распределен по всему ядру. Однако, когда клетка готовится к делению, хроматин уплотняется и собирается в свойственное данному виду число хорошо различимых хромосом.
    Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

    • эухроматин - рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

    • гетерохроматин - компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

    Хроматин был выделен из ядер и проанализирован. Он состоит из очень тонких волокон, которые содержат 60 % белка, 35 % ДНК и, вероятно, 5 % РНК. Хроматиновые волокна в хромосоме свернуты и образуют множество узелков и петель. ДНК в хроматине очень прочно связана с белками, называемыми гистонами, функция которых состоит в упаковке и упорядочении ДНК в структурные единицы - нуклеосомы. В хроматине содержится также ряд негистоновых белков. В отличие от эукариотических, бактериальные хромосомы не содержат гистонов; в их состав входит лишь небольшое количество белков, способствующих образованию петель и конденсации (уплотнению) ДНК.

    В ядрах, кроме хроматиновых участков и матрикса, встречаются перихроматиновые фибриллы, перихроматиновые и интерхроматиновые гранулы. Они содержат РНК и встречаются практически во всех активных ядрах, представляют собой информационные РНК, связанные с белками, — рибонуклеопротеиды (информосомы). Матрицами для синтеза этих РНК являются разные гены, разбросанные по деконденсированным участкам хромосомных (точнее, хроматиновых) фибрилл.

    Нуклеосома — это структурная часть хромосомы, образованная совместной упаковкой нити ДНК с гистоновыми белками H2А, H2B, H3 и H4. Последовательность нуклеосом, соединенная гистоновым белком H1, формирует нуклеофиламент (nucleofilament), или иначе нуклеосомную нить.

    3.1.2.1. Два типа хроматина

    1. Эу- и гетерохроматин

    а) Электронная микроскопия. Хроматин занимает основную часть объема ядра. На электронных микрофотографиях (рис. 4.4) видно, что он подразделяется на два типа: эухроматин (2) — светлые (электронопрозрачные) области, и гетерохроматин (1) — темные (электроноплотные) глыбки, которые расположены преимущественно на периферии ядра, прилегая к ядерной оболочке (3). Из предыдущего изложения ясно, что

    — эухроматин — это те участки хромосом или целые хромосомы, которые находятся в деконденсированном (диффузном) состоянии,

    — а гетерохроматин — это, напротив, конденсированные (и потому электроноплотные) фрагменты хромосом или целые хромосомы.

    В связи с этим, эухроматин еще называют диффузным хроматином, а гетерохроматин — конденсированным хроматином.

    б) При световой микроскопии (см. рис. 4.3) эухроматин, как уже отмечалось, в ядре не выявляется. Те же глыбки, которые обычно обозначаются как «глыбки хроматина», представляют собой на самом деле лишь гетерохроматин.

    в) Активность хроматина. В конденсированных участках хромосом ДНК недоступна для разнообразных внутриядерных ферментов — в том числе для ферментного комплекса, осуществляющего транскрипцию ДНК. В связи с этим гетерохроматин функционально неактивен, а эухроматин, наоборот, активно участвует в транскрипции ДНК.

    2. Виды гетерохроматина. При изменении функционального состояния клетки или в процессе ее дифференцировки возможен переход части гетерохроматина в эухроматин и обратно. В связи с этим гетерохроматин подразделяют на два вида:

    1) факультативный гетерохроматин — способный превращаться в эухроматин;

    2) конститутивный гетерохроматин — никогда и ни в одной клетке к подобному превращению не способный. Очевидно, это те области хромосом, в которых ДНК не содержит генов, а выполняет лишь структурную функцию. Данные области расположены в основном вблизи центромерных участков хромосом.

    3. Состояние хроматина в разных клетках. Из вышесказанного следует: чем больше в ядре доля гетерохроматина, тем ниже функциональная активность ядра, т.е. тем меньше скорость синтеза РНК. Для иллюстрации этого положения рассмотрим рис. 4.5.

    Сверху — ядро нервной клетки (I). Здесь гетерохроматина очень мало. Это означает, что ядро и клетка в целом функционально очень активны.

    Внизу — лимфоцит (II). В его ядре преобладает гетерохроматин. Это вполне коррелирует с очень малым объемом цитоплазмы, которая к тому же бедна органеллами. И то, и другое говорит о том, что интенсивность синтеза РНК и белков в лимфоците очень невелика.

    4. Половой хроматин (тельце Барра)

    а) Одним из компонентов гетерохроматина может быть т.н. половой хроматин (или тельце Барра), встречающийся только у женщин.

    Дело в том, что у мужчин в наборе хромосом каждой соматической клетки содержится по одной Х- и Y-половой хромосоме. И обе они пребывают в деконденсированном состоянии, т.е. относятся к эухроматину.

    У женщин же в соматических клетках — по две Х-хромосомы. Из них деконденсирована только одна. Вторая же Х-хромосома всегда находится в конденсированном состоянии, образуя в ядре компактное тельце — т.н. половой хроматин.

    б) Для обнаружения полового хроматина часто исследуют мазок крови (рис. 4.6). В нейтрофильных лейкоцитах женщин половой хроматин (2) выявляется в виде барабанной палочки, отходящей от одного из сегментов ядра (1). По этому признаку в судебной медицине отличают кровь женщин от крови мужчин.

    Ядрышко - не самостоятельная структура или органоид. Оно - производное хромосомы, один из ее локусов, активно функционирующий в интерфазе.

    Хромосомы животных и растений в этом состоянии представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки , которая делит хромосому на два плеча (рис). Хромосомы с равными или почти равными плечами называют метацентрическими , с плечами неодинаковой длины - субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом - акроцентрические .

    В области первичной перетяжки расположена центромера, или кинетохор. Это пластинчатая структура, имеющая форму диска. Она связана тонкими фибриллами с телом хромосомы в области перетяжки. От него отрастают пучки микротрубочки митотического веретена, идущие в направлении к центриолям. Они принимают участие в движении хромосом к полюсам клетки при митозе.

    Обычно одна хромосома имеет только одну центромеру (моноцентрические хромосомы), но могут встречаться хромосомы дицентрические и полицентрические.

    Некоторые хромосомы имеют вторичную перетяжку . Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК.

    Плечи хромосом оканчиваются теломерами, конечными участками. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков, которые могут присоединяться к таким же разорванным концам других хромосом.

    Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов. Наиболее длинные - у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм.

    Число хромосом у различных объектов тоже значительно колеблется, но характерно для каждого вида. У некоторых радиолярий число хромосом достигает 1000-1600. Рекордсменом среди растений по числу хромосом (около 500) является папоротник ужовник, 308 хромосом у тутового дерева, у речного рака 196 хромосом. Наименьшее количество хромосом (2 на диплоидный набор) наблюдается у одной из рас аскариды, у сложноцветного Haplopappus gracilic - всего 4 хромосомы (2 пары).

    Совокупность числа, величины, величины и морфологии хромосом называется кариотипом данного вида. Даже у близких видов хромосомные наборы отличаются друг от друга или по числу хромосом, или по величине хотя бы одной или нескольких хромосом. Следовательно, структура кариотипа может быть таксономическим признаком.

    В составе ядрышка выявляются большие петли ДНК, содержащие гены pPНК, которые с необычайно высокой скоростью транскрибируются РНК-полимеразой I . 

    Каждый такой кластер генов называется районом ядрышкового организатора . 

    Ответ 21! Основные проявления жизнедеятельности клеток. Синтетические процессы в клетке. Взаимосвязь компонентов клетки в процессах анаболизма и катаболизма. Понятие о секреторном цикле; механизмы поглощения и выделения продуктов в клетке. Внутриклеточная регенерация. Общая характеристика и биологическое значение.

    Внешние воздействия клетка испытывает практически постоянно. Факторы, воздействующие на нее, могут быть химического, физического или биогенного характера. Реактивные свойства клеток - это их способность реагировать на внешние воздействия. При этом изменяется структура и функция клеток. Глубина изменений зависит от состояния клетки и характера воздействия (его природы, силы и продолжительности). В организме имеются стволовые, начавшие дифференцироваться (молодые), специализированные (зрелые) и старые клетки. Естественно их реакция на внешние воздействия неодинакова.У стволовых клеток в состоянии покоя низкий уровень обменных процессов и они наиболее устойчивы к внешним воздействиям. Ферменты поступают в гладкую эндоплазматическую сеть или гиалоплаз-му, где участвуют в синтезе углеводов или липидов. Эти вещества направляются в аппарат Гольджи, где включаются в состав гранул. Большая роль в целенапрвленном перемещении веществ принадлежит цитоскелету и подразделению цитоплазмы клетки на отсеки (компартменты). Энергия для осуществления синтетических процессов (и белков, и небелковых веществ) образуется в митохондриях в виде АТФ. В обоих случаях прослеживается тесная функциональная взаимосвязь внутриклеточных структур.

    Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).

    Анаболизм, или ассимиляция (от лат. assimilatio — уподобление), представляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.

    Важнейшим моментом ассимиляции является синтез белков и нуклеиновых кислот. Частным случаем анаболизма является фотосинтез, который представляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влиянием лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена.

    Катаболизм, или диссимиляция (от лат. dissimilis — расподобление), является экзотермическим процессом, при котором происходит распад веществ с освобождением энергии. Этот распад происходит в результате переваривания и дыхания. Переваривание представляет собой процесс распада крупных молекул на более мелкие молекулы, тогда как дыхание является процессом окислительного катаболизма простых Сахаров, глицерина, жирных кислот и дезаминированных аминокислот, в результате которого происходит освобождение жизненно необходимой химической энергии. Эта энергия используется для пополнения запасов аденозинтри-фосфата (АТФ), который является непосредственным донором (источником) клеточной энергии, универсальной энергетической «валютой» в биологических системах. Пополнение запасов АТФ обеспечивается реакцией фосфата (Ф) с аденозиндифосфатом (АДФ), а именно:

    АДФ + Ф + энергия ® АТФ

    Когда АТФ разлагается на АДФ и фосфат, энергия клетки освобождается и используется для работы в клетке. АТФ представляет собой нуклеотид, состоящий из остатков аденина, рибозы и трифосфата (трифосфатных групп), тогда как аденозиндифосфат (АДФ) имеет лишь две фосфатные группы. Богатство АТФ энергией определяется тем, что его трифосфатный компонент содержит две фос-фоангидридные связи. Энергия АТФ превышает энергию АДФ на 7000 ккал/моль. Этой энергией обеспечиваются все биосинтетические реакции в клетке в результате гидролиза АТФ до АДФ и неорганического фосфата. Итак, цикл АТФ-АДФ является основным механизмом обмена энергии в живых системах.

    Секреторным циклом называется периодическое изме­нение состояния секреторной клетки, обусловленное образованием, накоплением, выделением секрета и восстановлением ее дальнейшей секреции. В секреторном цикле выделяют несколько фаз: поступление в клетку исходных веществ (ведущее значение в этом имеют диффу­зия, активный транспорт и эндоцитоз), синтез и транспорт исходного секреторного продукта, формирование секреторных гранул, выделе­ние секрета из клетки — экзоцитоз. Из клетки выделяются и негра-нулированные продукты секреции. Существуют клетки с разными ти­пами внутриклеточных процессов и видами выделения секретов. В за­висимости от типа выделения секрета секрецию делят на голокри­новую, апокриновую (макро- и микро-) и мерокриновую двух видов в зависимости от механизма выхода секрета через апикальную мембра­ну: секрет покидает гландулоцит через отверстия, образующиеся при контакте с ней секреторной гранулы в апикальной мембране, или че­рез мембрану, не меняющую свою структуру.

    Биопотенциалы секреторных клеток имеют ряд особенностей в покое и при секреции: низкую величину и скорость изменения, градуальность, различную поляризованность базальной и апикальной мембран, гетерохронность изменения поляризованности мембраны при секреции и др.

     Мембранный потенциал гландулоцитов различных экзокринных желез в состоянии относительного покоя равен от —30 до —75 мВ. Стимуляция секреции меняет мембранный потенциал. Это измене­ние поляризованности мембраны называется секреторным потен­циалом. У разных гландулоцитов он имеет существенные различия, характеризует секреторный процесс, влияет на секреторный цикл и сопряжение его фаз, синхронизацию активности гландулоцитов в составе данной железы (это не исключает химического взаимодей­ствия их через межклеточные контакты). Оптимальной для возник­новения секреторных потенциалов считается поляризованность мем­бран, равная —50 мВ.

     Для возбуждения большинства видов гландулоцитов характерна деполяризация их мембран, но описаны гландулоциты, при возбуж­дении которых мембраны гиперполяризуются, формируя двухфазные потенциалы. Деполяризация мембраны обусловлена потоком ионов Na+ в клетку и выходом из нее ионов К+. Гиперполяризация мем­браны обусловлена транспортом в клетку ионов Сl- и выходом из нее ионов Na+ и К+. Различие в поляризованности базальной и апикальной мембран составляет 2—3 мВ, что создает значительное электрическое поле (20—30 В/см). Его напряженность при возбуж­дении секреторной клетки возрастает примерно вдвое, что способ­ствует перемещению секреторных гранул к апикальному полюсу клетки и выходу секреторного материала из клетки.

     Физиологические стимуляторы секреции, повышающие концен­трацию Са2+ в гландулоцитах, влияют на калиевые и натриевые каналы и вызывают секреторный потенциал. Ряд стимуляторов сек­реции, действующих через активацию аденилатциклазы и не вли­яющих на обмен ионов Са2+ в гландулоцитах, не вызывает в них электрических эффектов. Следовательно, изменение мембранного потенциала и электрической проводимости гландулоцитов опосре­довано увеличением внутриклеточной концентрации кальция.

    I. Внутриклеточная регенерация (может проявляться как гипертрофия или полиплоилизация клетки), протекает на

    1. Молекулярная регенерация — обновление молекул белков, углеводов и липидов во внутриклеточных
    структурах.
    2.Внутриорганоидная регенерация — восстановление отдельных частей органелл.
    В норме при внутриклеточной регенерации скорость процессов восстановления внутриклеточных структур (на молекулярном или органоидном уровне) и их разрушения сбалансированы и поэтому она может ничем не проявляться. При преобладании процессов восстановления над разрушением наблюдается гипертрофия клеток — увеличение объема функциональной активности клеток, часто сочетающаяся с полиплоидизациеи. При срыве же регенерации процессы разрушения могут превалировать над восстановлением, что приводит к атрофии клеток — уменьшение их объема и
    функциональной активности.

    Значение Р. для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний и функциональной активности в меняющихся условиях среды, а также восстановление и компенсация функций, нарушенных в результате действия различных патогенных факте. Физиологическая и репаративная Р. является структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии.

    Ответ 22! Информационные межклеточные взаимодействия. Гуморальные, и синаптические взаимодействия; взаимодействия через внеклеточный матрикс и щелевые контакты. Реакция клеток на внешние воздействия.
    1   2   3   4


    написать администратору сайта