Главная страница
Навигация по странице:

  • Изохорическим процессом

  • Изобарический процесс. Закон Гей-Люссака.

  • Изотермический процесс. Закон Бойля – Мариотта.

  • Политропический процесс.

  • Объединённый газовый закон

  • ответы. основы энергетики. Ответы к экзаменационным вопросам по предмету Основы энергетики


    Скачать 0.74 Mb.
    НазваниеОтветы к экзаменационным вопросам по предмету Основы энергетики
    Анкорответы
    Дата19.01.2023
    Размер0.74 Mb.
    Формат файлаdocx
    Имя файлаосновы энергетики.docx
    ТипДокументы
    #894548
    страница4 из 5
    1   2   3   4   5
    Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

           1. Изохорический процесс. Закон Шарля. V = const.

           Изохорическим процессом называется процесс, протекающий при постоянном объёме V. Поведение газа при этом изохорическом процессе подчиняется закону Шарля:

           При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

           График изохорического процесса на РV-диаграмме называется изохорой. Полезно знать график изохорического процесса на РТ- и VT-диаграммах (рис. 1.6).       Уравнение изохоры:

     



     

    (1.4.1)

     
    Рис. 1.6

           Если температура газа выражена в градусах Цельсия, то уравнение изохорического процесса записывается в виде

     



     

    (1.4.2)

    где Р0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град-1. График такой зависимости на Рt-диаграмме имеет вид, показанный на рисунке 1.7.

     
    Рис. 1.7

           2. Изобарический процесс. Закон Гей-Люссака. Р = const.

           Изобарическим процессом называется процесс, протекающий при постоянном давлении Р. Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака:

           При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

           График изобарического процесса на VT-диаграмме называется изобарой. Полезно знать графики изобарического процесса на РV- и РT-диаграммах (рис. 1.8).

     
    Рис. 1.8

           Уравнение изобары:

     

    .

     

    (1.4.3)

           Если температура газа выражена в градусах Цельсия, то уравнение изобарического процесса записывается в виде

     



     

    (1.4.4)

    где α =1/273 град -1температурный коэффициент объёмного расширения. График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.

     
    Рис. 1.9

           3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

           Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

           Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

           При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

           График изотермического процесса на РV-диаграмме называется изотермой. Полезно знать графики изотермического процесса на VT- и РT-диаграммах (рис. 1.10).

     
    Рис. 1.10

           Уравнение изотермы:

     



     

    (1.4.5)

           4. Адиабатический процесс (изоэнтропийный):

           Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

           5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

           6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится NA=6,02·1023молекул (число Авогадро).

           7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

     



     

    (1.4.6)

           Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

           При  , давление смеси газов:

     



     

    (1.4.7)

           8. Объединённый газовый закон (Закон Клапейрона).

           В соответствии с законами Бойля – Мариотта (1.4.5) и Гей-Люссака (1.4.3) можно сделать заключение, что для данной массы газа

    15. Энтропия

    Для удобства рассмотрения многих термодинамических процессов вводится понятие энтропии - приведенной теплоты.

    dq = TdS, т.е. dS = — - формально энтропию можно рассматривать как

    функцию, полный дифференциал которой определяется приведенным выражением.

    Очевидно, что если тепло подводится (dq0), то энтропия возрастает, если отводится - то энтропия убывает. Энтропия не может быть измерена непосредственно, либо косвенным путем. Ее величину определяют в результате расчета непосредственно применяется для вычислений изменений энтропии в термодинамических процессах. Ts-диаграмма

    В термодинамике для анализа работы тепловых машин весьма широко используются энтропийные диаграммы (TS, iS идр.).

    Наиболее распространена Ts-диаграмма (тепловая диаграмма). В этой диаграмме площадь под кривой процесса пропорциональна количеству подведенного тепла, как это показано на рис. 2.4

    .

     



    11) Изотермический процесс-это процесс, происходящий в физической системе при постоянной температуре (T = const).

    При постоянной температуре dU =0, поэтому все сообщаемое системе количество теплоты расходуется на совершение работы против внешних сил.

    Изотермический процесс:

    dQ = dA



     

    12) Изобарный процесс-это процесс, происходящий в физической системе при постоянном давлении (p = const). При этом изменяются объем и температура, следовательно, совершается работа dA = pdV и изменяется внутренняя энергия dU.

    Изобарный процесс :

    dQ = dU+pdV

    При изобарном процессе dQp = CpdT, поэтому первое начало термодинамики примет вид:

    CpdT = CvdT + pdV

    Уравнение состояния для моля идеального газа:

    pV = RT

    Для изобарного процесса это уравнение примет вид

    pdV = RdT

    Соотношения Cp = Cv+R или Cp-Cv = R называют уравнением Майера.

     



     

    13) Изохорный процесс-это процесс, происходящий в физической системе при постоянном объёме (V = const). Так как V = const, то dV =0, а следовательно, и dA = pdV = 0.

    Вся теплота, сообщенная газу при изохорном процессе, идет на увеличение его внутренней энергии.

    Изохорный процесс :

    dQ = dU

    CvdT = dU

    (Cv - молярная теплоемкость газа при постоянном объеме)



    14) Адиабатный процесс - это процесс, протекающий без теплообмена с окружающей средой.

    Адиабатными можно считать быстро протекающие процессы. При быстром сжатии газа затрачивается работа, приводящая к увеличению внутренней энергии и повышению температуры. Тело, температура которого повышена, должно некоторое количество теплоты передать окружающей среде, но процесс теплопередачи требует некоторого времени, поэтому при быстром сжатии (или расширении) теплота не успевает распространиться из данного объема, то есть dQ = 0, и процесс можно рассматривать как адиабатный.

    Адиабатный процесс (первое начало термодинамики):

    dA = -dU.



     

    15) Политропный процесс это процесс, в котором теплоемкость остается постоянной. Политропным процессом являются изохорный, изобарный, изотермический и адиабатный процессы, потому что все они имеют общую особенность - они происходят при постоянной теплоемкости.

    В первых двух процессах теплоемкости соответственно равны Cv и Cp, в изотермическом процессе (dT=0) теплоемкость равна бесконечности, в адиабатном политропный процесс равна нулю. График политропного процесса показан ниже:



    Политропа это график зависимости между параметрами состояния идеального газа при   . Политропа в координатах p, V - гипербола, занимающая промежуточное положение между изотермой и адиабатой.

    Исходя из первого начала термодинамики при условии постоянства теплоемкости (   ), можно вывести уравнение политропы:

     - уравнение политропы,

    где   - показатель политропы.

    16)(не уверен в билете, одна фигня в интернете)Многоступенчатые поршневые компрессоры широко применяются для автоматизации промышленных предприятий, в автомобилестроении, используются для заправки баллонов для систем пожаротушения, аварийно-спасательных служб и баллонов дыхательных агрегатов.

    Поршневые компрессоры невероятно востребованы, поскольку это наиболее дешевое средство производства и переработки сжатого воздуха. К тому же при профессиональном подходе, многоступенчатые поршневые компрессоры не только высокоэкономичные, но и удобные в обслуживании.

    16. Круговые термодинамические процессы

    При однократном расширении рабочего тела можно получить ограниченное количество работы. Для непрерывного превращения теплоты в работу необходимо, чтобы процесс совершался непрерывно, т.е. шёл по кругу. Термодинамический процесс, в котором начальное и конечное состояния совпадают, называется круговым процессом или циклом. Для повторного получения работы необходимо возвратить рабочее тело в исходное состояние, то есть сжать рабочее тело. На сжатие рабочего тела должна быть затрачена работа, эта работа подводится к рабочему телу от какого-либо внешнего источника. Очевидно, что процесс сжатия рабочего тела нужно осуществлять по пути, отличному от пути процесса расширения. Иначе суммарная работа, полученная в результате кругового процесса, будет равна нулю: l = lр – lсж.

    Путь процесса сжатия следует выбирать таким образом, чтобы работа сжатия по абсолютной величине была меньше работы расширения. На рис. pv-диаграмме приведен круговой процесс, в котором рабочее тело расширяется по кривой 1-3-2.При этом работа расширения численно равна пл. 132451. Процесс возвращения рабочего тела из конечного состояния в начальное состояние может осуществляться одним из следующих путей:

    1. По кривой сжатия 2-3-1. При этом работа сжатия (пл. 231542) будет равна работе расширения (пл. 132451). В результате суммарная работа в таком круговом процессе равна нулю.

    2. По кривой сжатия 2-6-1, расположенной над кривой расширения 1-3-2При этом работа сжатия (пл. 261542) больше работы расширения (пл. 132451). Суммарная работа в таком круговом процессе будет отрицательной.

    3. По кривой сжатия 2-7-1, расположенной ниже кривой расширения. В этом круговом процессе работа расширения (пл. 132451) больше работы сжатия (пл. 271542), аплощадь, ограниченная замкнутой кривой 1-3-2-7-1, представляет собой работу цикла. Следовательно, чтобы работа была положительной, нужно, чтобы кривая сжатия 2-7-1в рv-диаграмме была расположена ниже кривой расширения 1-3-2Многократно, повторяя такой круговой процесс, можно за счет подвода теплоты получить любое количество работы,


    Рис. 12. Замкнутый круговой процесс (цикл) а – прямой , б – обратный цикл.

    Цикл, в результате которого производится положительная работа, называется прямым. Такой цикл в Рv-диаграмме протекает по часовой стрелке. Все тепловые двигатели работают по прямым циклам (рис. 12 а). Цикл, в результате которого получается отрицательная работа, называется обратным (рис. 12 б). В нем работа сжатия больше работы расширения. По обратным циклам работают холодильные машины. Циклы могут быть обратимыми и необратимыми.

    Обратимым термодинамическим циклом называется цикл, все процессы в котором обратимы. Необратимым термодинамическим циклом называется цикл, в котором хотя бы один из составляющих его процессов необратим.

    Для отвода и подвода теплоты используются источники теплоты. Если источник отдает рабочему телу теплоту, то его называют теплоотдатчиком, или горячим источником теплоты (нагревателем), если источник получает от рабочего тела теплоту - теплоприемником, или холодным источником теплоты (холодильником).

    17. Паротурбинные электростанции

    На современных тепловых электростанциях большой мощности превращение теплоты в работу производится в циклах, использующих в качестве основного рабочего тела водяной пар высоких давлений и температур. Водяной пар производится парогенераторами (паровыми котлами), в топках которых сжигаются различные виды органического топлива: уголь, мазут, газ и др. Термодинамический цикл преобразования теплоты в работу с помощью водяного пара был предложен в середине XIX в. инженером и физиком У. Ренкиным.

    В парогенераторе за счет теплоты сжигаемого топлива вода, нагнетаемая в парогенератор насосом 5, превращается в водяной пар, который затем поступает в турбину 2, вращающую электрогенератор 3. Тепловая энергия пара преобразуется в турбине в механическую работу, которая в свою очередь преобразуется в генераторе в электроэнергию. Из турбины отработанный пар поступает в конденсатор 4, где он конденсируется (превращается в воду). Насос 5 нагнетает конденсат в парогенератор, замыкая таким образом цикл.

    На рис. 2.2, а и б изображен цикл Ренкина на перегретом паре в p,v- и Т,s-диаграммах, состоящий из следующих процессов:

    —изобара 4—5—6—1 — процесс нагрева, испарения воды и перегрева пара в парогенераторе за счет подводимой теплоты сгорания топлива q1

    —адиабата 1—2 — процесс расширения пара в турбине с совершением полезной внешней работы lат;

    —изобара 2—3 — процесс конденсации отработанного пара с отводом теплоты q2охлаждающей водой;

    —адиабата 3—4 — процесс сжатия конденсата питательным насосом до первоначального давления в парогенераторе с затратой подводимой извне работы /ан.



    Рис.2.2. Цикл Ренкина на перегретом паре b p, v- и Т, s-диаграммах

    В соответствии со вторым законом термодинамики полезная работа за цикл равна разности подведенной и отведенной в цикле теплоты: Термодинамические исследования цикла Ренкина показывают, что его эффективность в большой степени зависит от величин начальных и конечных параметров (давления и температуры) пара.

    18. Газотрубинные установки

    Газотурбинная установка представляет собой универсальное модульное устройство, которое объединяет в себе: электрогенератор, редуктор, газовую турбину и блок управления. Также, присутствует и дополнительное оборудование, такое как: компрессор, устройство запуска, аппарат теплового обмена. Газотурбинная установка способна функционировать не только лишь в режиме вырабатывания электроэнергии, но и производить совместное производство электрической энергии с тепловой. Опираясь на то, что пожелает клиент, производство газотурбинных установок способно исполняться с универсальной системой, когда выхлопные газы применяют для получения пара либо же горячей воды.

    Данное оборудование имеет два главных блока: турбину силового типа и генератор. Они размещаются в одном блоке.

    Схема газотурбинной установки очень проста: газ, образующийся после перегорания топлива, начинает способствовать вращению лопастей самой турбины.

    Таким образом, образуется крутящий момент. Это приводит к образованию электрической энергии. Выходящие газы осуществляют превращение воды в пар в котле – утилизаторе. Газ в данном случае работает с двойной пользой.

    Замкнутый цикл газотурбинной установки подразумевает под собой следующее: газ через компрессор подается в калорифер (теплообменник), куда поступает тепло от внешних источников. Затем он подается в газовую турбину, где осуществляется его расширение. Давление газа при этом получается меньше.

    После этого газы попадают в холодильную камеру. Тепло оттуда выводится во внешнюю среду. Потом газ направляется в компрессор. Затем цикл возобновляется заново. Сегодня в энергетике аналогичное оборудование почти не применяется.

    Производство газотурбинных установок такого типа осуществляется в больших размерах. Также, имеются потери и низкое значение КПД, напрямую зависящее от температурных показателей самого газа до турбины.

    Разомкнутый цикл газотурбинной установки используют намного чаще. В этом оборудовании компрессором осуществляет подача воздуха из окружающей среды, который при высоком давлении попадает в специально предназначенную камеру сгорания. Тут происходит сжигание топлива.

    Температура органического топлива достигает отметки в 2000 градусов. Это может привести к повреждению металла самой камеры. Чтобы предотвратить это, в нее подается много воздуха, чем это нужно (примерно в 5 раз). Это существенно снижает температуру самого газа и защищает металл.

    Схема газотурбинной установки с разомкнутым циклом

    Схема газотурбинной установки с разомкнутым циклом выглядит следующим образом: топливо подается в газовую горелку (форсунки), располагаемой внутри жаропрочной трубы. Туда нагнетается и воздух, после чего осуществляется процесс сгорания топлива. Таких труб несколько и располагаются они концентрически. Поступает воздух в имеющиеся между ними зазоры, создавая защитный барьер и препятствуя выгоранию. Благодаря трубам и потоку воздуха камера находится в надежной защите от перегревания. При этом на выходе температура газов ниже, чем у самого топлива. Металл может выдерживать 1000 – 1300°С. Именно такие показатели температуры газов камеры и присутствуют в современных газотурбинных аппаратах.

    Отличия газотурбинных установок закрытого и открытого типа

    Главное отличие газотурбинных установок закрытого типа от открытого основывается на том, что в первом случае нет камеры сгорания, а применяется нагреватель. Тут происходит нагрев воздуха, при этом, он не участвует в самом процессе образования тепла. Такое оборудование выполняют исключительно с горением, при неизменной величине давления. Применяется тут органическое либо ядерное топливо.

    В ядерных агрегатах используют не воздух, а гелий, углекислый газ либо же азот. К преимуществам такого оборудования можно отнести возможность применять тепло атомного распада, которое выделяется в атомных реакторах.

    Благодаря большой концентрации «рабочего тела» стало возможно добиться высоких показаний коэффициента теплоотдачи внутри самого регенератора. Это способствует и повышению уровня регенерации при небольших размерах. Однако такое оборудование широкого применения пока не получило.

    19. Теплофикационные циклы ТЭЦ

    В тех случаях, когда прилегающие к тепловым электростанциям районы должны потреблять большие количества теплоты, целесообразнее прибегать к комбинированной выработке теплоты и электроэнергии. Установки, служащие для комбинированной выработки теплоты и электроэнергии, называют теплоэлектроцентралями (ТЭЦ), они работают по так называемому теплофикационному циклу.

    Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплотой. На них используется теплота «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и теплоты достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т.е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением теплоты и электроэнергии. В России в настоящее время на ТЭЦ производится около 30% всей вырабатываемой электроэнергии.

    Простейшая схема тепло-фикацион­ной установки показана на рис. 3 с ос­новными элементами паросиловой уста­новки.



    Рис. 3. Схема простейшей теплофикационной установки

    Охлаждающая вода под действием насоса 8 циркулирует по замкнутому кон­туру, в который включен потребитель тепла. Температура ее на выходе из конденсатора 4 несколько ниже температуры конденсата tHно дос­таточно высока для обогрева помещений. Конденсат при темпе­ратуре tHзабирается насосом 5 и после сжатия подается в котел 1. Охлаждающая вода нагревается за счет теплоты конденсирующе­го пара и под напором, создаваемым насосом 8, поступает в ото­пительную систему 7. В ней нагретая вода отдает тепло окружаю­щей среде, обеспечивая необходимую температуру помещений. На выходе из отопительной системы охлажденная вода вновь посту­пает в конденсатор и в нем опять нагревается поступающим из турбины паром.

    При наличии более или менее постоянного потребителя про­изводственного пара пользуются турбиной, работающей с проти­водавлением без конденсатора.

    В теплофикационных установках используются турбины трех типов: с противодавлением р2 = 1,2 - 12 бар; с ухудшенным вакуумом р2= 0,5 - 0,9 бар; с регулируемыми отборами пара.

    20. Котельная установка

    Котельная установка (котельная) - это сооружение, в котором осуществляется нагрев рабочей жидкости (теплоносителя) (как правило - воды) для системы отопления или пароснабжения, расположенное в одном техническом помещении. Котельные соединяются с потребителями при помощи теплотрассы и/или паропроводов. Основным устройством котельной является паровой, жаротрубный и/или водогрейный котлы. Котельные используются при централизованном тепло- и пароснабжении или при местном теплоснабжении зданий.

    Котельная установка представляет собой комплекс устройств, размещенных в специальных помещениях и служащих для преобразования химической энергии топлива в тепловую энергию пара или горячей воды. Ее основные элементы - котел, топочное устройство (топка), питательные и тягодутьевые устройства. В общем случае котельная установка представляет собой совокупность котла (котлов) и оборудования, включающего следующие устройства: подачи и сжигания топлива; очистки, химической подготовки и деаэрации воды; теплообменные аппараты различного назначения; насосы исходной (сырой) воды, сетевые или циркуляционные - для циркуляции воды в системе теплоснабжения, подпиточные - для возмещения воды, расходуемой у потребителя и утечек в сетях, питательные для подачи воды в паровые котлы, рециркуляционные (подмешивающие); баки питательные, конденсационные, баки-аккумуляторы горячей воды; дутьевые вентиляторы и воздушный тракт; дымососы, газовый тракт и дымовую трубу; устройства вентиляции; системы автоматического регулирования и безопасности сжигания топлива; тепловой щит или пульт управления.

    Котел - это теплообменное устройство, в котором теплота от горячих продуктов горения топлива передается воде. В результате этого в паровых котлах вода превращается в пар, а в водогрейных котлах нагревается до требуемой температуры.

    Топочное устройство служит для сжигания топлива и превращения его химической энергии в тепло нагретых газов.

    Питательные устройства (насосы, инжекторы) предназначены для подачи воды в котел.

    Тягодутьевое устройство состоит из дутьевых вентиляторов, системы газовоздуховодов, дымососов и дымовой трубы, с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла, а также удаление их в атмосферу. Продукты сгорания, перемещаясь по газоходам и соприкасаясь с поверхностью нагрева, передают теплоту воде.

    Для обеспечения более экономичной работы современные котельные установки имеют вспомогательные элементы: водяной экономайзер и воздухоподогреватель, служащие соответственно для подогрева воды и воздуха; устройства для подачи топлива и удаления золы, для очистки дымовых газов и питательной воды; приборы теплового контроля и средства автоматизации, обеспечивающие нормальную и бесперебойную работу всех звеньев котельной.

    В зависимости от использования их теплоты котельные делятся на энергетические, отопительно-производственные и отопительные.

    Энергетические котельные снабжают паром паросиловые установки, вырабатывающие электроэнергию, и обычно входят в комплекс электрической станции. Отопительно-производственные котельные бывают на промышленных предприятиях и обеспечивают теплотой системы отопления и вентиляции, горячего водоснабжения зданий и технологические процессы производства. Отопительные котельные решают те же задачи, но обслуживают жилые и общественные здания. Они делятся на отдельно стоящие, сблокированные, т.е. примыкающие к другим зданиям, и встроенные в здания. В последнее время все чаще строят отдельно стоящие укрупненные котельные с расчетом на обслуживание группы зданий, жилого квартала, микрорайона.

    Устройство встроенных в жилые и общественные здания котельных в настоящее время допускается только при соответствующем обосновании и согласовании с органами санитарного надзора.

    Котельные малой мощности (индивидуальные и небольшие групповые) обычно состоят из котлов, циркуляционных и подпиточных насосов и тягодутьевых устройств. В зависимости от этого оборудования в основном определяются размеры помещений котельной.

    21. ВЕТРОЭНЕРГЕТИКА И СОЛНЕЧНАЯ ЭНЕРГЕТИКА

    Энергия ветра на земном шаре оценивается в 175... 219 тыс. ТВт×ч в год, при этом развиваемая им мощность достигает (20... 25×109 кВт. Это примерно в 2,7 раза больше суммарного расхода энергии на планете. Считают, однако, что полезно может быть использовано только 5 % этой энергии. В настоящее же время эта цифра значительно меньше. Использовать ветер, т. е. энергию движения воздуха, человек начал еще в глубокой древности.

    Постоянные воздушные течения к экватору со стороны северного и южного полушарий образуют систему пассатов. Общая циркуляция атмосферы происходит главным образом из-за вращения Земли, при котором под действием центробежной силы воздушные массы отбрасываются в районе экватора в верхние слои атмосферы. На место ушедших масс воздуха с севера и юга приходят новые воздушные слои.

    Помимо постоянных движений воздушных слоев существуют периодические движения воздуха с моря на сушу и обратно в течение суток (бризы) и в течение года (муссоны). Происхождение бризов и муссонов обусловлено различным нагревом воды и суши вследствие их разной теплоемкости.

    При использовании энергии ветра в современных условиях стремятся учесть опыт тех стран, в которых ветряные двигатели издавна широко применялись, особенно в Дании и Голландии — классических странах ветряных мельниц.

    Многие видные русские исследователи, такие как профессор Е.Жуковский и академик С.А.Чаплыгин, внесли большой вклад вразвитие ветряных двигателей.

    Ветроэнергетика — отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования энергии ветра для получения механической, электрической и тепловой энергии (ветротехника) и определяющая области и масштабы целесообразного использования ветровой энергии в народном хозяйстве. Использование энергии ветра осуществляется с помощью специальных установок.

    Ветроэнергетическая установка (ВЭУ) — это комплекс технических устройств для преобразования кинетической энергии ветрового потока в какой-либо другой вид энергии. Ветроэнергетическая установка состоит: из ветроагрегата (ветродвигатель в комплекте с одной или несколькими рабочими машинами); устройства, аккумулирующего энергию или резервирующего мощность; в ряде случаев дублирующего двигателя (чаще теплового); систем автоматического управления и регулирования режимов работы установки.

    Различают ветросиловые установки и ветроэлектрические станции. Ветродвигателем механической энергии. Различают ветродвигатели крыльчатые (наиболее распространенные) с коэффициентом использования энергии ветра до 0,48, карусельные (роторные) с коэффициентом использования не более 0,15 и барабанные. В основном ветродвигатели применяют в ветроэлектрических станциях.

    В настоящее время ветроэнергетика — одна из самых бурно развивающихся отраслей мировой электроэнергетики. В 1960 — 1970-е гг. большинство эксплуатируемых в Европе ВЭУ имело мощность до 20 кВт, затем — от 100 до 250 кВт; средняя мощность ВЭУ, выпущенных в 2002 г. в Германии, составила 1100 кВт. Тенденция роста единичных мощностей ВЭУ, по-видимому, сохранится и далее. Так, фирма «De Wind» планирует создание агрегатов мощностью 3... 5 МВт. По прогнозам общая мировая мощность ВЭУ к 2006 г. составит более 36 000 МВт.

    Лучистая энергия Солнца, поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Поток солнечной энергии на земную поверхность эквивалентен 1,2×1014 т условного топлива. Солнце, как и другие звезды, является раскаленным газом. В его составе 82 % водорода, 17 % гелия, остальные элементы составляют около 1 %. Внутри Солнца существует область высокого давления, где температура достигает 15... 20 млн °С. Кислород на Солнце имеется в незначительном количестве, поэтому процессы горения, понимаемые в обычном смысле, не протекают сколько-нибудь заметно. Огромная энергия образуется на Солнце за счет синтеза легких элементов водорода и гелия. Одна из проблем использования солнечной энергии заключается в том, что наибольшее количество ее поступает летом, а наибольшее потребление энергии происходит зимой.

    Солнечная энергетика — отрасль науки и техники, разрабатывающая основы, методы и средства использования солнечного излучения или солнечной радиации для получения электрической, тепловой и других видов энергии и использования их в народном хозяйстве.

    Солнечное излучение (СИ) — это процесс переноса энергии при распределении электромагнитных волн в прозрачной среде. По квантовой теории электромагнитные волны — это поток элементарных частиц и фотонов с нулевой массой покоя, движущихся в вакууме со скоростью света. В космосе через 1 м2 в 1 с проходит 3-1021 фотонов, энергия которых зависит от длины волны (мкм).

    Земля находится от Солнца на расстоянии примерно 150 млн км. Площадь поверхности Земли, облучаемой Солнцем, составляет около 500-106 км2. Поток солнечной радиации, достигающей Земли, по разным оценкам составляет (7,5... 10)-107 кВт×ч/год, что значительно превышает ресурсы всех других возобновляемых источников энергии. атмосферы, высоты Солнца над горизонтом, размещения приемника СИ на Земле по

    Солнечное излучение на поверхность Земли зависит от многих факторов: широты и долготы местности, ее географических и климатических особенностей, состояния отношению к Солнцу и т.д.

    Поток солнечного излучения на Землю меняется, достигая максимума в 2200 кВт × ч/м2 в год для северо-запада США, запада Южной Америки, части юга и севера Африки, Саудовской Аравии и Центральной части Австралии. Россия находится в зоне, где поток СИ меняется в пределах от 800 до 1400 кВт × ч/м2 в год. При этом продолжительность солнечного сияния в России находится в пределах от 1700 до 2000 ч/год. Максимум указанных значений на Земле составляет более 3600 ч/год. За год на всю территорию России поступает солнечной энергии больше, чем энергия от всех российских ресурсов нефти, газа, угля и урана.

    22. Электрические схемы распределительных устройств

    При выборе схем распределительных устройств подстанции следует учитывать число присоединений (линий и трансформаторов), требования надежности электроснабжения потребителей и обеспечения транзита мощности через подстанцию в нормальном, ремонтных и послеаварийных режимах. Схемы подстанций должны формироваться таким образом, чтобы была возможность их поэтапного развития. При возникновении аварийных ситуаций должна быть возможность восстановления электроснабжения потребителей средствами автоматики. Число и вид коммутационных аппаратов выбираются таким образом, чтобы обеспечивалась возможность проведения поочередного ремонта отдельных элементов подстанции без отключения других присоединений.

    К схемам подстанций предъявляются требования простоты, наглядности и экономичности. Эти требования могут быть достигнуты за счет унификации конструктивных решений подстанции, которая наилучшим образом реализуется в случае применения типовых схем электрических соединений распределительных устройств.

    Рассмотрим наиболее характерные типовые схемы распределительных устройств, нашедшие широкое применение при проектировании подстанций с высшим напряжением 35–750 кВ. К простейшим схемам относятся блочные схемы линия – трансформатор с разъединителем (рис. 14.4, а) и выключателем (рис. 14.4, б). На этих и последующих схемах указаны области рекомендуемых номинальных напряжений. Первая схема может использоваться для подстанций, присоединенных к линиям без ответвлений (рис. 14.4, а), если защита линии со стороны центра питания охватывает трансформатор либо предусмотрен телеотключающий импульс на отключение линии от защиты трансформатора. Вторая схема применяется также для подстанций, подключенных к ответвлениям от линий (рис. 14.3, б).

    Для двухтрансформаторной подстанции, питающейся от двух параллельных линий, может быть применена схема с двумя блоками с выключателями в цепи трансформаторов и перемычкой, содержащей два последовательно включенных разъединителя Р1 и Р2 (рис. 14.4, в). Такое включение разъединителей позволяет осуществлять их поочередный ремонт одновременно с соответствующим блоком линия – трансформатор. На практике находятся в эксплуатации подстанции, выполненные по упрощенным блочным схемам, в которых в качестве коммутационных аппаратов используются отделители и короткозамыкатели. Принципы работы таких схем подробно описаны в курсе «ЭУСиП». В связи с конструктивными недостатками этих аппаратов и отрицательным воздействием их работы на выключатели смежных подстанций при коротких замыканиях на вновь сооружаемых подстанциях эти схемы применять не рекомендуется.




     



     Один из вариантов схемы по типу мостика с выключателями в цепях линий и ремонтной перемычкой со стороны линий показан на рис. 14.5. Такая схема применяется в радиальных линиях и линиях с двухсторонним питанием с заходом их на подстанции (рис. 14.3, в, з). Здесь на четыре присоединения (две линии и два трансформатора) устанавливается три выключателя.

    На подстанциях с двумя линиями и двумя трансформаторами может быть использована схема, в которой число выключателей равно числу присоединений. При этом включение и отключение каждого присоединения производится двумя выключателями – схема по типу четырёхугольника (рис. 14.6). Недостатком схемы является то, что она не позволяет увеличивать количество линий. На напряжении 220 кВ эта схема рекомендуется при мощности трансформаторов 125 МВ⋅А и более.

    При числе линий три и более рекомендуется ряд типовых схем распределительных устройств со сборными системами шин. Наиболее простая схема выполняется с одной секционированной системой шин (рис. 14.7, а). В ней каждая линия и каждый трансформатор подключены к одной из секций шин, между которыми установлен секционный выключатель СВ. Более сложная схема содержит также одну секционированную систему шин, но в ней добавляется обходная система шин (рис. 14.7, б).



     

    Секции шин I и II соединяются между собой секционным выключателем СВ. Дополнительно предусмотрен обходной выключатель ОВ, предназначенный для соединения посредством соответствующих разъединителей одной или другой секции шин с обходной системой шин. Такая схема позволяет использовать обходной выключатель для замены выключателя любого присоединения при необходимости вывода его в ремонт.

    23. Электрические схемы ТЭЦ,ГЭС,КЭС,АЭС

    Изучение электрической части электростанций, особен­но схем собственных нужд, тесно связано с технологиче­ским циклом производства электроэнергии, поэтому ниже рассмотрены упрощенные технологические схемы произ­водства электроэнергии на ТЭС и АЭС.

    На тепловых конденсационных электростанциях хими­чески связанная энергия топлива при сжигании преобразу­ется в тепловую, которая используется для нагрева воды в котле и образования пара. Энергией водяного пара приво­дится во вращение турбина, соединенная с генератором.

    Упрощенная технологическая схема КЭС на пылеугольном топливе показана на рис. 1. Нормальная работа электростанции обеспечивается четкой и бесперебойной работой всех ее механизмов. Топливное хозяйство 1 вклю­чает приемо-разгрузочные механизмы, устройства для раз­мораживания топлива, транспортеры 2, склады топлива. К пылеприготовительным устройствам 3 относятся меха­низмы дробления, магнитные аппараты для удаления случайных металлических включений, мельницы для раз­мола топлива. Подготовленное топливо мельничными вентиляторами подается в бункеры котлов, а затем пита­телями пыли 4 к горелкам котлов 5.

    Воздух в топку котла через воздухоподогреватель 6 подается дутьевыми вентиляторами 7, а продукты сгора­ния отсасываются дымонасосами 8. Продукты сгорания твердого топлива — шлак и зола — удаляются механизма­ми шлакозолоудаления 9 (смывные, багерные, шламовые насосы).



    Рис. 1. Технологическая схема (упрощенная) КЭС:

    1 — топливное хозяйство; 2 — транспортеры топлива; 3 — пылеприготовительные устройства; 4 — питатели пыли; 5 —котел; 6 — воздухоподогреватель; 7 — дутьевые вентиляторы; 8 — дымососы; 9 — шлакозолоудаление; 10 — промежуточный пароперегреватель; 11 — часть высокого давления турбины; 12 — часть низкого давления турбины; 13 — генератор; 14 — блочный транс­форматор; 15 — трансформатор собственных нужд; 16 — конденсатор; 17 — конденсатный насос; 18 — циркуляционный насос; 19 — пруд-охладитель; 20 — водоподготовительная установка; 21 — дренажный насос; 22 — подогреватель низкого давления; 23 — деаэратор; 24 — питательный насос; 25 — по­догреватель высокого давления; 26 — экономайзер

    Отработавший в турбине (части высокого давления 11 и низкого 12) пар поступает в конденсатор 16, где охлаж­дается и конденсируется благодаря подаче охлаждающей воды из пруда-охладителя 19 циркуляционными насосами 18. Конденсат откачивается конденсатным насосом 17, подогревается в подогревателе низкого давления 22, де­аэрируется в деаэраторе 23 и питательным насосом 24 че­рез подогреватель высокого давления 25 и экономайзер 26 подается в котел.

    Генераторы 13 КЭС соединяются в блоки с повышаю­щими трансформаторами 14, которые передают энергию в распределительное устройство высокого напряжения (РУ ВН) и далее по линиям потребителям. Для электроснаб­жения многочисленных приводов механизмов собственных нужд электростанции используются трансформаторы с. н. 15, присоединенные отпайкой к генератору энергоблока.

    ТЕХНОЛОГИЧЕСКАЯ СХЕМА ТЭЦ

    На ТЭЦ вырабатывается не только электрическая, но и тепловая энергия. Для нужд промышленных предприя­тий используется пар, частично отработавший в турбине, а для отопления и горячего водоснабжения устанавлива­ются специальные подогреватели.

    На рис. 2 показана только часть технологической схе­мы, которая отличается от схемы на рис. 1. Все механиз­мы, обслуживающие технологическую схему ТЭЦ, анало­гичны рассмотренным выше в схеме КЭС, Дополнитель­ным механизмом с. н. является сетевой насос 30.

    Особенность электрической части ТЭЦ определяется расположением ее вблизи промышленных предприятий. В этих условиях часть электрической энергии выдается в местную сеть непосредственно на генераторном напряжении, для чего на ТЭЦ обычно со­оружается ГРУ. Избыток мощ­ности выдается в сеть высоко­го напряжения.


    1   2   3   4   5


    написать администратору сайта