Главная страница
Навигация по странице:

  • 9. Структура клеточной мембраны эукариотической клетки и транспорт веществ через нее

  • Функциональная классификация контактов: I. Контакты простого типа

  • II. Контакты сцепляющего типа

  • Способы трансмембранного переноса

  • На схеме показаны варианты трансмембранного транспорта.

  • 10. Микроскопическое строение почки и нефрона

  • 11. Строение и функции митохондрий

  • 12. Микроскопическое строение ткани легких

  • 13. Строение и функции рибосом

  • 14. Микроскопическое строение стенки кишечника

  • ответы к экзамену по гистологии. Ответы к экзамену по цитологии и гистологии История создания и современное состояние клеточной теории


    Скачать 9.54 Mb.
    НазваниеОтветы к экзамену по цитологии и гистологии История создания и современное состояние клеточной теории
    Анкорответы к экзамену по гистологии.docx
    Дата29.08.2017
    Размер9.54 Mb.
    Формат файлаdocx
    Имя файлаответы к экзамену по гистологии.docx
    ТипОтветы к экзамену
    #8443
    страница2 из 10
    1   2   3   4   5   6   7   8   9   10


    Функции макрофагов:
    1) Фагоцитоз (неиммунный и иммунный).
    2) Взаимодействие с цитокинами.
    3) Переработка и представление антигена T-клеткам.
    4) Макрофаги вырабатывают:
    - ферменты,
    - некоторые белки сыворотки,
    - кислородные радикалы,
    - простагландины и лейкотриены,
    - цитокины (интерлейкины, фактор некроза опухолей и другие).
    5) Макрофаги секретируют:
    - лизоцим,
    - нейтральные протеазы,
    - кислые гидролазы,
    - аргиназу,
    - многие компоненты комплемента,
    - ингибиторы ферментов (антиактиватор плазминогена, альфа2-макроглобулин),
    - транспортные белки (трансферрин, фибронектин, транскобаламин II),
    - нуклеозиды и цитокины (ФНО альфа, ИЛ-1, ИЛ-8, ИЛ-12).
    ИЛ-1 выполняет много важных функций:
    - воздействуя на гипоталамус, вызывает лихорадку;
    - стимулирует выход нейтрофилов из костного мозга;
    - активирует лимфоциты и нейтрофилы.
    ФНОальфа (кахектин) - пироген:
    - во многом дублирует действие ИЛ-1;
    - играет важную роль в патогенезе септического шока, вызванного грамотрицательными бактериями;
    - под влиянием ФНОальфа резко увеличивается образование макрофагами и нейтрофилами перекиси водорода и других свободных радикалов;
    - при хроническом воспалении ФНОальфа активирует катаболические процессы и тем самым способствует развитию кахексии - симптома многих хронических заболеваний.
    6) Макрофаги продуцируют:
    - активные формы кислорода,
    - производные арахидоновой кислоты,
    - фактор активации тромбоцитов,
    - хемокины,
    - колониестимулирующие факторы,
    - факторы, стимулирующие пролиферацию фибробластов и разрастание мелких сосудов.
    7) Макрофаги регулируют пролиферацию лимфоцитов, разрушают опухолевые клетки, вирусы и некоторых бактерий. В уничтожении внутриклеточных паразитов макрофагам принадлежит ключевая роль. Для этого они сливаются в гигантские клетки, которые под влиянием провоспалительных цитокинов объединяются в гранулемы. Образование гигантских клеток, возможно, регулирует интерферон гамма. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов, которыми обладают макрофаги.
    8) Макрофаги отвечают за индукцию толерантности.
    9) Макрофаги удаляют из крови иммунные комплексы и другие иммунологически активные вещества (при аутоиммунных заболеваниях).
    10) Макрофаги участвуют в заживлении ран, удалении отживших клеток и образовании атеросклеротических бляшек.Таким образом, макрофаги являются одним из орудий врожденного иммунитета. Кроме того макрофаги наряду с B - и T-лимфоцитами участвуют и в приобретенном иммунном ответе, являясь "дополнительным" типом клеток иммунного ответа: макрофаги являются фагоцитирующими клетками, чья функция - "проглатывание" иммунногенов и процессирование их для представления T-лимфоцитам в форме, пригодной для иммунного ответа.

    9. Структура клеточной мембраны эукариотической клетки и транспорт веществ через нее



    Клеточная мембрана (плазмалемма / плазматическая мембрана) - биологическая мембрана, окружающая протоплазму живой клетки. Толщина мембраны составляет около 10 нм.
    Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов трех классов:
    - фосфолипиды,
    - гликолипиды,
    - холестерол.
    Молекулы фосфолипидов и гликолипидов имеют гидрофильную ("головка") и гидрофобную ("хвост") часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - экспонированы наружу.
    Холестерол придает мембране жесткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жесткие и хрупкие. Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой затруднен.
    Биологическая мембрана может включать и различные протеины:
    - интегральные (пронизывающие мембрану насквозь),
    - полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой),
    - поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны).
    Некоторые протеины являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных протеинов выполняют функцию ионных каналов, различных транспортеров и рецепторов.
    Функции плазмалеммы:
    1) Опорная функция. Мембрана участвует в формообразовании клетки - к ней крепятся элементы внутриклеточного скелета (микротрубочки, микрофиламенты и промежуточные филаменты).
    2) Рецепторная функция. С наружной стороны плазмолеммы могут находиться специфические белки-рецепторы к биологически активным веществам - гормонам, медиаторам, антигенам.
    3) Взаимодействие с другими клетками. С помощью рецепторов клетки могут также специфически узнавать друг друга, вступая во взаимодействие путём адгезии, то есть "слипания" своих поверхностей. Часто образуются долговременные контакты между клетками, причём, известно несколько типов таких контактов (межклеточных соединений):
    а) Простое межклеточное соединение - это просто сближение плазмолемм соседних клеток на расстояние 15 - 20 нм без образования специальных структур. При этом плазмолеммы взаимодействуют друг с другом с помощью специфических адгезивных гликопротеинов - кадгеринов, интегринов и так далее.
    б) Интердигитация (пальцевидное соединение). Плазмолемма двух клеток, сопровождая друг друга, инвагинирует в цитоплазму вначале одной, а затем - соседней клетки.
    в) Щелевидное соединение (нексус). В области нексуса (длиной 0,5 – 3 мкм) плазмолеммы сближаются на расстояние 2 нм и пронизываются многочисленными белковыми каналами (коннексонами), связывающими содержимое соседних клеток. Через эти каналы (диаметром 2 нм) могут диффундировать ионы и небольшие молекулы.

    Электронная микрофотография и схема - нексус:
    Описание рисунка: 1 - широкрое межклеточное пространство вне нексуса; 2 - узкое (щель в 2 нм) межклеточное пространство в области нексуса; 3 - коннексоны - цилиндрические белковые каналы; 4 - плазмолеммы
    г) Десмосомы. В области десмосомы плазмолеммы утолщены с внутренней (цитоплазматической) стороны за счёт белков-десмоплакинов. Отсюда в цитоплазму отходят в виде пучка тонкие нити (промежуточные филаменты цитоскелета). В эпителии они образованы белком-кератином. Пространство между плазмолеммами заполнено утолщённым гликокаликсом, который пронизан сцепляющими белками-десмоглеинами, образующими фибриллоподобные структуры и дисковидное утолщение посередине.

    д) Плотное соединение (запирающая зона). Здесь плазмолеммы вплотную прилегают друг к другу - с помощью специальных белков. Места такого плотного прилегания образуют на контактирующих поверхностях подобие ячеистой сети. Они обеспечивают надёжное отграничение двух сред, находящихся по разные стороны от пласта клеток.
    е) Адгезивный поясок. По структуре данный контакт похож на десмосомный, но имеет форму ленты, опоясывающей клетку, утолщения со стороны цитоплазмы образованы белком винкулином (а не десмоплакинами), отходящие в цитоплазму нити - тонкие (а не промежуточные) филаменты из белка-актина, иные по природе и сцепляющие белки.
    ж) Синапсы - это области передачи сигнала от одной возбудимой клетки другой. В синапсе различают:
    - пресинаптическую мембрану (принадлежащую одной клетке),
    - синаптическую щель,
    - постсинаптическую мембрану (ПоМ) (часть плазмолеммы другой клетки).
    Обычно сигнал передаётся химическим веществом - медиатором, воздействующим на специфические рецепторы в ПоМ.
    Электронная микрофотография и схема - десмосома: Описание рисунка: 1 - область вне десмосомы; 2 - плазматические мембраны обычной структуры; 3 - плазматические мембраны с дополнительными слоями в области десмосомы; 4 - прикрепительные пластинки в цитоплазме клетки; 5 - тонкие фибриллы; 6 - поперечные межмембранные филаменты; 7 - центральная перегородка, образованная слиянием наружных краёв гликокаликса соседних клеток.


    Функциональная классификация контактов:
    I. Контакты простого типа:
    а) Простые межклеточные соединения
    б) Интердигитации
    II. Контакты сцепляющего типа:
    а) Десмосомы
    б) Адгезивный поясок
    III. Контакты запирающего типа
    Плотные соединения
    IV. Контакты коммуникационного типа:
    а) Нексусы
    б) Синапсы
    4) Разделение клетки на специализированные замкнутые отсеки - компартменты, в которых поддерживаются определенные условия внутриклеточной среды. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов.
    5) Барьерная функция. За счёт своего липидного бислоя, мембрана непроницаема для многих веществ (гидрофильных соединений и ионов), то есть эффективно отграничивает цитоплазму от внеклеточной среды.
    6) Избирательная проницаемость. Проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость определяет успешное отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
    7) Транспортная функция:
    Плазмолемма содержит транспортные системы для переноса в клетку или из неё определённых веществ:
    - низкомолекулярных,
    - высокомолекулярных,
    - более крупных частиц - как жидких, так твёрдых.
    Цитоплазма имеет тот состав, который наиболее оптимален для жизнедеятельности клеток.
    8) Трансмембранный потенциал:
    Транспортные системы плазмолеммы:
    - Na+, K+-насос,
    - каналы для ионов K+.
    Благодаря деятельности насоса, внутри клеток создаётся избыток К+, а снаружи - Na+. Благодаря наличию К+-каналов, небольшая часть ионов К+ возвращается по градиенту концентрации на внешнюю сторону клеток. Плазмолемма всех клеток имеет снаружи положительный заряд, а между обеими сторонами мембраны существует трансмембранная разность потенциалов. Плазмолемма возбудимых клеток (мышечных и нервных) содержит Na+-каналы, которые открываются при возбуждении мембраны, что обусловливает изменение трансмембранного потенциала.
    Способы трансмембранного переноса:

    Схема трансмембранного переноса (участие плазмолеммы в поступлении и выведении веществ):



    На схеме показаны варианты трансмембранного транспорта.
    1) Перенос низкомолекулярных веществ через плазмолемму (независимо от направления - внутрь клетки или из нее):
    а) Простая диффузия (пассивный транспорт). Это самостоятельное проникновение веществ через мембрану по градиенту концентрации. Так проходят:
    - небольшие нейтральные молекулы (Н2О, СО2, О2),
    - низкомолекулярные гидрофобные органические вещества (жирные кислоты, мочевина).
    б) Облегчённая диффузия. Вещество проходит через мембрану по градиенту своей концентрации, но с помощью специального белка - транслоказы, молекулы которого обычно пронизывают мембрану, образуя в ней транспортные каналы, и специфичны в отношении лишь данного вещества. Например, К+- и Na+-каналы.
    в) Активный транспорт. Вещество переносится с помощью специальной транспортной системы (насоса) против градиента концентрации. Для этого требуется энергия; чаще всего её источником служит распад АТФ. Например, Na+, K+-насос (или Na+, K+-АТФаза).
    2) Перенос в клетку крупных соединений и частиц (эндоцитоз). Вначале образуется впячивание плазмолеммы в цитоплазму, которое всё углубляется и, в конце концов, превращается в пузырёк, окружённый мембраной и полностью находящийся в цитоплазме:
    а) Пиноцитоз - это захват и поглощение клеткой растворимых макромолекулярных соединений.
    б) Фагоцитоз - это захват и поглощение клеткой твёрдых частиц.
    в) Эндоцитоз - перенос веществ, опосредованный рецепторами. Поглощаемый субстрат предварительно специфически связывается с поверхностными рецепторами плазмолеммы. Например, путем эндоцитоза в клетку проникают частицы, по какой-либо причине не способные пересечь мембранный барьер (например, из-за крупных размеров), но необходимые для клетки.
    3) Перенос из клетки крупных соединений и частиц (экзоцитоз)
    а) Секреция - это такое выведение из клетки растворимых соединений, которое является одной из функций данной клетки. При этом могут выделяться вещества разного размера:
    - высокомолекулярные (белковые гормоны в передней доле гипофиза),
    - низкомолекулярные (ионы Н+ в желудке и почках, биологически активные катехоламины в соединительной ткани и так далее).
    Выведение этих веществ в одних случаях происходит в виде секреторных пузырьков, в других - по типу облегчённой диффузии или активного транспорта. В понятие секреции обычно не включают выведение из клетки обычных продуктов её обмена, а также выведение из неё таких ионов (например, Na+), которые остаются в окружающей среде.
    б) Экскреция - это выброс из клетки твёрдых частиц. Осуществляется путём слияния с плазмолеммой цитоплазматического пузырька, содержащего выделяемые частицы.
    в) Рекреция - перенос твёрдых частиц через клетку. Включает фагоцитоз и экскрецию.

    10. Микроскопическое строение почки и нефрона
    Почка - парный бобовидный орган выделительной (мочеобразовательной) системы у позвоночных животных.

    Почка:
    Почка снаружи покрыта прочной соединительнотканной (фиброзной, волокнистой) капсулой - плотным чехлом из соединительной ткани, содержащим жировые клетки. Почка состоит из:
    1) паренхимы - внешнего слоя коркового вещества и внутреннего слоя мозгового вещества, составляющих внутреннюю часть органа.
    2) системы накопления и выведения мочи - почечными чашечками, которые впадают в почечную лоханку.
    Почечная лоханка переходит в мочеточник, который впадает в мочевой пузырь. Корковое вещество представлено почечными клубочками. Мозговое вещество представлено канальцевыми частями нефронов, образует пирамиды, основанием обращенные к корковому слою. Пирамид может быть от одной до нескольких. Между ними располагаются почечные столбы - участки коркового вещества. Пирамида с прилегающим к ней почечным столбом образует почечную долю. Мозговое вещество состоит из петель Генле и собирательных трубочек. В центре вогнутого края находятся ворота почки, здесь расположено расширенное устье мочеточника - почечная лоханка. В нее открываются сосочковые протоки, раположенные на вершинах пирамид. В области ворот почки в неё входят кровеносные сосуды (почечные артерия и вена), лимфатические сосуды, нервы. Отходящие от почек мочеточники открываются в мочевой пузырь.
    Основные функции почек:
    1) Выделительная - достигается процессами фильтрации, секреции и реабсорбции. Механизм мочеобразования до сих пор полностью не ясен.
    2) Поддержание кислотно-щелочного равновесия плазмы крови.
    3) Обеспечение постоянства концентрации осмотически активных веществ в крови при различном водном режиме для поддержания водно-солевого равновесия.
    4) Вывод конечных продуктов азотистого обмена, чужеродных и токсических соединений, избыток органических и неорганических веществ.
    5) Участие в обмене углеводов и белков, в образовании биологически активных веществ, регулирующих уровень артериального давления, скорость секреции альдостерона надпочечниками и скорость образования эритроцитов.
    6) Участие в поддержании гомеостаза, регулируя водно-солевой обмен.
    7) Место выработки биологически активных веществ.
    Нефрон - основная структурно-функциональная единица почки, состоящая из остоит из почечного - мальпигиева тельца и канальца.
    Почечное тельце - начальная часть нефрона, состоящая из клубочка и покрывающей его капсулы Шумлянского-Боумена.
    Клубочек - собой сосудистое образование, которое содержит около 50 капиллярных петель, начинающихся от приносящей клубочковой артериолы и собирающихся в выносящую клубочковую артериолу.
    Капсула Шумлянского-Боумена имеет форму чаши, внутри которой расположен клубочек, состоящая из двух листков (слоев):
    1) Внутреннего (висцерального) листка клубочковой капсулы. Плотно прилегает к стенкам клубочковых капилляров и является одновременно наружным (эпителиальным) слоем стенки капилляра.
    2) Наружного (париетального) листка капсулы. Несколько отстоит от внутреннего, в результате между ними образуется микроскопическая полость - полость капсулы Шумлянского-Боумена, куда после фильтрации поступает жидкая часть плазмы крови и где образуется ультрафильтрат, или первичная (превентивная) моча.

    Строение нефрона:
    Описание рисунка: 1 - клубочек; 2 - проксимальный отдел канальца; 3 - дистальный отдел канальца; 4 - тонкий отдел петли Генле
    Почечный каналец делится на три основных отдела:
    1) проксимальный, или извитый, каналец I порядка;
    2) петлю Генле (петля нефрона):
    3) дистальный, или извитый, каналец II порядка.

    Схематическое изображение мальпигиева тельца:
    Описание рисунка: 1 - приносящая клубочковая артериола; 2 - выносящая клубочковая артериола; 3 - капиллярные петли клубочка; 4 - капсула; 5 – каналец.

    11. Строение и функции митохондрий
    Митохондрии - (от греч. mitos– нить, chondrion- зернышко) изменчивые и пластичные органеллы эукариотических клеток, обладающие собственной ДНК и выполняющие функцию синтеза АTP.
    Размеры и форма митохондрий сильно варьирует. Ширина обычно

    0,5 мкм, длина 7 - 60 мкм. Митохондрии подвижные, пластичные, постоянно изменяют форму, могут ветвиться, сливаться друг с другом, и расходится. Перемещение митохондрий связано с микротрубочками. Митохондрии расположены около мест высокого потребления АТФ (между миофибриллами в сердечной мышце, вокруг жгутика сперматозоида). Число митохондрий зависит от потребности клетки в энергии, чем больше потребность, тем больше митохондрий в клетке и тем более они развиты. Обычно в клетке содержится около 2000 митохондрий, общий объем которых составляет до 25% от общего объема клетки.
    Строение митохондрии:


    Митохондрия ограничена двумя мембранами:
    1) Гладкой внешней. Во внешнюю мембрану входят порины, которые образуют поры и делают мембраны проницаемыми для веществ. Содержит интегральные мембранные белки.
    2) Складчатой внутренней. Имеет очень большую поверхность; внутренняя мембрана непроницаема для большинства молекул (кроме О2, СО2, Н20). Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%): транспортные белки-переносчики, ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечные перегородки - кристы.
    Различные типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа.
    Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством.
    Матрикс также обогащен белками, особенно ферментами цитратного цикла.

    Функции митохондрий:
    1) "Силовая станция" клетки - за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР).
    2) Локализация следующих метаболических процессов:
    - превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл;
    - дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название "окислительное фосфорилирование");
    - расщепление жирных кислот путем β-окисления и частично цикл мочевины.
    3) Поставка в клетку продуктов промежуточного метаболизма и действие наряду с эндоплазматическим ретикулумом как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л).
    4) Анаэробное окисление углеводов (гликолиз) для получения энергии. Субстрат - гексозы (глюкоза).

    5) Захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ. Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем.

    12. Микроскопическое строение ткани легких
    Легкое - парный орган, который является сложной трубчато-альвеолярной железой. Альвеолы легкого являются аналогами секреторных сегментов железы, а бронхиолы, бронхи и трахея представляют собой систему протоков. Поверхность легкого покрыта очень эластичной рыхлой соединительной тканью, сверху которой расположен слой мезотелия; эти два слоя образуют висцеральную плевру. Соединительнотканные септы входят в вещество легкого через ворота, разделяя его на дольки. Внутрилегочные бронхи имеют такую же структуру, что и главные бронхи, за исключением того, что в стенках внутрилегочных бронхов гладкие мышцы расположены по всей окружности спиралевидно, а хрящ представлен в виде анастомозирующих пластинок неправильной формы.

    Легкое:
    Основными структурными единицами ткани легкого являются бронхиола и части респираторного хода дольки - альвеолярный ход, альвеолярный мешочек и альвеолы. Бронхиолы представляют собой разветвления мелких бронхов, не содержащие бокаловидных клеток, желез и хрящей. Их стенка состоит из выстилки однослойного мерцательного низкого цилиндрического или кубического эпителия, лежащего на высоко эластичной собственной пластинке слизистой оболочки. Среди клеток выстилающего эпителия разбросаны отдельные клетки эндокринной природы (клетки Клара). Стенка бронхиол, в свою очередь, окружена гладкомышечной оболочкой. Респираторные бронхиолы - это бронхиолы, представляющие собой промежуток между легочными альвеолами, которые выстланы плоским эпителием, с одной стороны, вдоль другой стороны бронхиол проходит ветвь легочной артерии.
    Альвеолярный ход можно сравнить с длинным коридором, по бокам которого расположены столбы, которые имеют сходную с бронхиолами структуру. Между столбами находятся альвеолярные мешочки, которые лишены стенок, ввиду того, что в них открываются альвеолы.
    Легочные альвеолы выстланы крайне уплощенными эпителиальными клетками, между которыми разбросаны клетки кубического эпителия. Снаружи эпителий покрыт тонкой соединительнотканной пленкой, состоящей из ретикулиновых и эластических волокон. Эта пленка содержит обширное капиллярное русло. На поверхности эпителия расположены свободные макрофаги (пылевые клетки). Небольшие плоские эпителиальные клетки называются эпителиальными клетками типа I (пневмоцитами типа I); диффузия газов проходит через их цитоплазму и базальную мембрану, а также через базальную пластинку и эндотелий капилляров в альвеолярной стенке. Кубические эпителиальные клетки относят к эпителиальным клеткам типа II (пневмоцитам типа II), их также еще называют септальными или большими альвеолярными клетками. В их цитоплазме находятся пластинчатые тельца, содержащие большое количество фосфолипидов. При выделении, фосфолипиды распространяются в виде тонкой пленки по поверхности эпителия, выстилающего альвеолы, в качестве поверхностно-активного вещества или сурфактанта. Таким образом уменьшается уровень поверхностного натяжения, что предотвращает спадение стенок альвеол при выдохе.

    Легочные альвеолы:

    13. Строение и функции рибосом
    Рибосома - важнейший органоид живой клетки сферической или слегка овальной формы, диаметром 100 - 200 ангстрем, состоящий из большой и малой субъединиц. Рибосомы были открыты только с помощью электронного микроскопа. Рибосомы служат для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК, или мРНК. Этот процесс называется трансляцией.
    В эукариотических клетках рибосомы располагаются на мембранах эндоплазматического ретикулума, хотя могут быть локализованы и в неприкрепленной форме в цитоплазме. Нередко с одной молекулой мРНК ассоциировано несколько рибосом, такая структура называется полирибосомой. Синтез рибосом у эукариот происходит в специальной внутриядерной структуре - ядрышке.
    Рибосомы представляют собой нуклеопротеид, в составе которого отношение РНК / белок составляет 1 : 1 у высших животных и 60 - 65 : 35 - 40 у бактерий. Рибосомная РНК составляет около 70 % всей РНК клетки. Рибосомы эукариот включают четыре молекулы рРНК. Почти вся рРНК находится в виде магниевой соли, что необходимо для поддержания структуры; при удалении ионов магния рибосома подвергается диссоциации на субъединицы.
    Функции рибосом
    Исследование ультраструктуры клеток многочисленных видов многоклеточных растений и животных, бактерий и простейших показало, что рибосомы – обязательный органоид каждой клетки. Наличие этого органоида во всех клетках, однородность его строения и химического состава свидетельствуют о важной роли рибосом в жизнедеятельности клеток. Было выяснено, что на рибосомах происходит синтез белков.
    В процессах биосинтеза белка роль рибосом заключается в том, что к ним из основного вещества цитоплазмы непрерывно подносятся с помощью т-РНК аминокислоты, и происходит укладка этих аминокислот в полипептидные цепи в строгом соответствии с той генетической информацией, которая передается из ядра в цитоплазму через и-РНК, постоянно поступающую к рибосомам. На основании такой функции рибосом в белковом синтезе можно назвать их своего рода "сборочными конвейерами", на которых в клетках образуются белковые молекулы.
    В процессе синтеза белка, таким образом, активное участие принимают т-РНК и и-РНК, а роль рибосомальной РНК еще не выяснена. По имеющимся в настоящее время данным, рибосомальная РНК не принимает участия в синтезе белковых молекул. В комплексе с белком рибосом она образует строму этого органоида.
    При осуществлении процессов синтеза белка в клетках активную роль выполняют не все рибосомы. Специальные биохимические исследования позволили установить. Что наиболее активная роль в синтезе клеточных белков принадлежит рибосомам, связанным с мембранами ЭПС. Можно предполагать, что эти два органоида, теснейшим образом связанные друг с другом, представляют собой единый аппарат синтеза (рибосомы) и транспорта (эндоплазматическая сеть) основной массы белка, вырабатываемого в клетке.
    В рибосомах, находящихся в ядре, происходит синтез ядерных белков. Рибосомы митохондрий и пластид выполняют функцию синтеза части белков, содержащихся в этих органоидах.
    Вопрос о том, где в клетке образуются рибосомы, до сих пор не решен, но сейчас уже довольно убедительно показано, что основным местом формирования рибосом служит ядрышко и образованные в нем рибосомы поступают из ядра в цитоплазму.

    Описание рисунка: 1 - синтез мРНК рибосомных белков РНК полимеразой II; 2 - экспорт мРНК из ядра; 3 - узнавание мРНК рибосомой; 4 - синтез рибосомных белков; 5 - синтез предшественника рРНК (45S - предшественник) РНК полимеразой I; 6 - синтез 5S pРНК РНК полимеразой III; 7 - сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц; 8 - присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы; 9 - дозревание большой субчастицы, высвобождение ядрышковых белков и РНК; 10 - выход рибосомных субчастиц из ядра; 11 - вовлечение их в трансляцию.

    Схема синтеза рибосом в клетках эукариот:
    Описание рисунка: 1 - синтез мРНК рибосомных белков РНК полимеразой II; 2 - экспорт мРНК из ядра; 3 - узнавание мРНК рибосомой; 4 - синтез рибосомных белков; 5 - синтез предшественника рРНК (45S - предшественник) РНК полимеразой I; 6 - синтез 5S pРНК РНК полимеразой III; 7 - сборка большой рибонуклеопротеидной частицы, включающей 45S-предшественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участие в созревании рибосомных субчастиц; 8 - присоединение 5S рРНК, нарезание предшественника и отделение малой рибосомной субчастицы; 9 - дозревание большой субчастицы, высвобождение ядрышковых белков и РНК; 10 - выход рибосомных субчастиц из ядра; 11 - вовлечение их в трансляцию.

    14. Микроскопическое строение стенки кишечника
    Тонкая кишка - это отдел пищеварительного тракта человека, расположенный между желудком и толстой кишкой. В тонкой кишке в основном и происходит процесс пищеварения. Тонкая кишка называется тонкой за то, что ее стенки менее толсты и прочны, чем стенки толстой кишки, а также за то, что диаметр ее внутреннего просвета, или полости, также меньше диаметра просвета толстой кишки.
    В состав собственной пластинки слизистой входит слизистая оболочка. На ней пальцевидные выросты - ворсинки. Они покрыты однослойным призматическим эпителием. В нем видны бокаловидные клетки (крупные светлые), выделяющие слизь. Ниже ворсинок расположены складки слизистой - крипты. Под ними - тонкий мышечный слой слизистой. Далее - подслизистая основа из рыхлой соединительной ткани. Ниже - мышечная оболочка из двух слоев мышц: внутреннего - кольцевого и наружного - продольного. На поверхности кишки серозная оболочка из мезотелия и подстилающего его слоя соединительной ткани.
    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта