Главная страница
Навигация по странице:

  • Курсовая работа по дисциплине: «Процессы и аппараты» на тему: «Печь первичного риформинга в производстве аммиака»

  • 1.Введение Минеральные удобрения

  • Производство аммиака

  • Технологические аппараты и оборудование: 1

  • 1.2 Теплообмен в трубчатой печи

  • Печь первичного реформинга в производстве аммиака. БАм-первичный риформинг -ОБРАЗЕц. Печь первичного риформинга в производстве аммиака


    Скачать 0.66 Mb.
    НазваниеПечь первичного риформинга в производстве аммиака
    АнкорПечь первичного реформинга в производстве аммиака
    Дата04.05.2023
    Размер0.66 Mb.
    Формат файлаdocx
    Имя файлаБАм-первичный риформинг -ОБРАЗЕц.docx
    ТипКурсовая
    #1107972
    страница1 из 3
      1   2   3


    Смоленское областное государственное бюджетное профессиональное

    образовательное учреждение

    «Верхнеднепровский технологический техникум»

    Курсовая работа

    по дисциплине:

    «Процессы и аппараты»

    на тему:

    «Печь первичного риформинга в производстве аммиака»

    Выполнила студент(ка): группы №32 ХТНВ

    Иванов А.В.

    Руководитель курсовой

    п. Верхнеднепровский

    2023 год

    Содержание

    Введение

    1.1 Теплообмен в трубчатой печи… 9

    1.2 Основные показатели работы трубчатых печей… 14

    2. Расчетная часть.

    2.1 Тепловой баланс трубчатой печи. Расчет коэффициента

    полезного действия и расхода топлива… 15

    2.2 Выбор типоразмера трубчатой печи… 18

    2.3 Расчет диаметра печных труб… 20

    2.4 Расчет камеры конвекции… 22

    2.5 Гидравлический расчет змеевика трубчатой печи… 26

    Заключение

    Список использованной литературы

    1.Введение

    Минеральные удобрения

    Минеральные удобрения являются одним из важнейших видов продукции химической промышленности. Рост численности населения выдвигает перед всеми странами мира одну и ту же проблему – умелое управление способностью природы воспроизводить жизненные ресурсы и прежде всего продовольственные. Задача расширенного воспроизводства продуктов питания уже давно решается применением в сельском хозяйстве минеральных удобрений. Научными прогнозами и перспективными планами предусматривается дальнейшее увеличение мирового выпуска минеральных и органоминеральных удобрений, удобрений с регулируемым сроком действия.

    Основными исходными продуктами при производстве этих удобрений являются аммиак (NH3) и азотная кислота (HN03). Аммиак получают в процессе взаимодействия газообразного азота воздуха и водорода (обычно из природного газа) при температуре 400−500° С и давления в несколько сот атмосфер в присутствии катализаторов. Азотная кислота получается при окислении аммиака. Около 70% всех азотных удобрений в нашей стране выпускается в виде аммиачной селитры, мочевины, или карбамида — CO (NH2)2 (46% N).

    Это гранулированные или мелкокристаллические соли белого цвета, легко растворимые в воде. Благодаря сравнительно высокому содержанию азота, неплохим при правильном хранении свойствам и высокой эффективности практически во всех почвенных зонах и на всех культурах аммиачная селитра и мочевина являются универсальными азотными удобрениями. Следует, однако, учитывать ряд их специфических особенностей.

    Аммиак

    Аммиак представляет собой газ, не имеющий цвета, но обладающий резким специфическим запахом, формула аммиака  NH3. Плотность аммиака почти в два раза меньше, чем плотность воздуха. При температуре 15 oC она составляет 0,73 кг/м3. Плотность аммиака жидкого в нормальных условиях равна 686 кг/м3. Молекулярная масса вещества - 17,2 г/моль. Отличительной особенностью аммиака является его высокая растворимость в воде. Так, при температуре 0 °C ее значение достигает около 1200 объемов в объеме воды, при 20 °C – 700 объемов. Раствор «аммиак - вода» (аммиачная вода) характеризуется слабощелочной реакцией и довольно уникальным свойством по сравнению с другими щелочами: с увеличением концентрации плотность снижается. Аммиак в природных условиях образуется в результате разложения органических соединений, содержащих азот. Для использования в промышленности это вещество получают искусственным путем.

    В промышленных условиях аммиак получают путем каталитического синтеза из азота и водорода: N2 + 3H2 → 2NH3 + Q. Процесс получения вещества проводят при температуре 500 °C и давлении 350 атм. В качестве катализатора используется пористое железо. Полученный аммиак удаляется охлаждением. Азот и водород, которые не прореагировали, возвращаются на синтез.

    Нитрид водорода широко применяется в различных отраслях промышленности. Огромные его количества используются для производства азотной кислоты и различных удобрений (мочевина, нитрат аммония и др.), полимеров, синильной кислоты, соды, аммониевых солей и других видов продукции химического производства. В легкой промышленности свойства аммиака применяют при очистке и окрашивании таких тканей, как шелк, шерсть и хлопок. В сталелитейном производстве он используется для увеличения твердости стали путем насыщения ее поверхностных слоев азотом. В нефтехимической промышленности при помощи нитрида водорода нейтрализуют кислотные отходы. Благодаря своим термодинамическим свойствам жидкий аммиак используется в качестве хладагента в холодильном оборудовании. Раствор нитрида водорода (нашатырный спирт) применяется в медицине для выведения из обморочного состояния, стимуляции рвоты, для обработки рук медперсонала, при укусах насекомых и пр.

    Производство аммиака

    В трубопровод подают уже подготовленную смесь из трех частей водорода и одной азота. Она проходит через турбокомпрессор, где сжимается до указанного выше давления, и направляется в колонну синтеза с катализатором на встроенных полках. Процесс, как мы выяснили, сильно экзотермический. Выделяющимся теплом нагревается азотоводородная смесь. Из колонны выходит около 25 процентов аммиака и непрореагировавшие азот с водородом. Весь состав поступает в холодильник, где смесь охлаждается. Аммиак под давлением становится жидким. Теперь в работу вступает сепаратор, задача которого — отделить аммиак в сборник в нижней части и непрореагировавшую смесь, которая возвращается циркуляционным насосом обратно в колонну. Благодаря такой циркуляции азотоводородная смесь используется на 95 процентов. Жидкий аммиак по аммиакопроводу поступает на специальный склад. Все аппараты, использующиеся в производстве, максимально герметичны, что исключает утечку. Используется лишь энергия происходящих внутри экзотермических реакций. Схема замкнутая, малоотходная. Затраты снижены благодаря непрерывному и автоматизированному процессу. Производство аммиака не может не влиять на окружающую среду. Неизбежны газовые выбросы, включающие в себя аммиак, оксиды углерода и азота и прочие примеси. Выделяется низкопотенциальная теплота. Сбрасывается вода после промывки систем охлаждения и самого реактора. Поэтому в производство аммиака необходимо включать каталитическую очистку с наличием газа-восстановителя. Снижения количества сточных вод можно добиться заменой поршневых компрессоров на турбокомпрессоры. Низкопотенциальная теплота может быть утилизирована вводом теплоты высокопотенциальной. Однако это увеличит загрязненность дымовыми газами. Энерготехнологическая схема, включающая парогазовый цикл, где используются как тепло пара, так и продукты сгорания топлива, одновременно и повысит эффективность производства, и уменьшит выбросы .



    Технологические аппараты и оборудование:

    1-компрессоры;

    2-подогреватели;

    3-реактор гидрирования сероорганических соединений;

    4-адсорбер H2S;

    5-трубчатая печь (первичный риформинг);

    6-шахтный конвертор (вторичный риформинг);

    7-паровые котлы;

    8-конверторы СО;

    9-абсорбер СО2;

    10-кипятильник;

    11 -регенератор раствора моноэтаноламина;

    12-насос;

    13-аппарат для гидрирования остаточных СО и СО2;

    14-воздушные холодильники;

    15-конденсационная колонна;

    16-испаритель жидкого NH3 (для охлаждения газа и выделения NH3);

    17-колонна синтеза NН3;

    18-водоподогреватель;

    19-теплообменник;


    1.2 Теплообмен в трубчатой печи

    Трубчатая печь имеет камеры радиации и конвекции. В камере радиации (топочная камера), где сжигается топливо, размещена радиантная поверхность (экран), поглощающая тепло в основном за счет радиации.

    В камере конвекции расположены трубы, воспринимающие тепло главным образом путем конвекции – при соприкосновении дымовых газов с поверхностью нагрева.

    Сырье последовательно проходит через конвекционные и радиантные трубы и поглощает тепло; обычно радиантная поверхность воспринимает большую часть тепла, выделяемого при сгорании топлива.

    Тепло эффективно передается излучением при охлаждении дымовых газов до 1000-1200 К. Снижение температуры дымовых газов до более низких значений часто бывает неоправданным, так как при этом радиантная поверхность работает с пониженной теплонапряженностью поверхности нагрева.

    Эффективность теплопередачи конвекцией в меньшей степени зависит от температуры дымовых газов, поэтому таким способом тепло передается, когда передача тепла излучением оказывается недостаточно эффективной. Таким образом, конвекционная поверхность использует тепло дымовых газов и обеспечивает их охлаждение до температуры, при которой величина коэффициента полезного действия аппарата будет экономически оправданной.

    Если тепло дымовых газов может быть использовано для иных целей, например, для подогрева воздуха или для производства водяного пара, то либо наличие конвекционной поверхности для нагрева сырья не является обязательным, либо размеры этой поверхности могут быть существенно уменьшены. При небольшой производительности иногда применяют печи без конвекционной поверхности, более простые в конструктивном отношении, но обладающие невысоким коэффициентом полезного действия.

    Рассмотрим механизм процесса передачи тепла, протекающий в печи, на примере печи, состоящей из двух камер с настильным пламенем. Характерной особенностью этой печи является наклонное расположение форсунок внизу печи, обеспечивающих соприкосновение факела с поверхностью стены, размещенной в середине камер (рис.1).



    1 – топочная камера;

    2 – средняя излучающая стенка

    с настильным пламенем;

    3 – камера конвекции;

    4 – трубы конвекционные;

    5 – трубы радиантные.

    I – сырье (ввод);

    II – сырье (выход);

    III – топливо и воздух.

    Рис.1. Схема двухкамерной вертикальной печи с настильным пламенем.

    В топочную камеру этой печи при помощи форсунки вводится распыленное топливо, а также необходимый для горения нагретый или холодный воздух. Высокая степень дисперсности топлива обеспечивает его интенсивное перемешивание с воздухом и более эффективное горение.

    Соприкосновение факела с поверхностью стены обуславливает повышение его температуры; излучение происходит не только от факела, но и от этой раскаленной стены. Тепло, выделенное при сгорании топлива, расходуется на повышение температуры дымовых газов и частиц горящего топлива; последние раскаляются и образуют светящийся факел.

    Температура, размер и конфигурация факела зависят от многих факторов и, в частности, от температуры и количества воздуха, подаваемого для горения топлива, способа подвода воздуха, от конструкции и нагрузки форсунки, теплотворной способности топлива, расхода форсуночного пара, величины радиантной поверхности (степени экранирования топки) и др.

    При повышении температуры воздуха увеличивается температура факела, повышается скорость горения и сокращаются размеры факела. Размеры факела сокращаются и при увеличении (до известного предела) количества воздуха, поступающего в топку, так как избыток воздуха ускоряет процесс горения топлива.

    При недостаточном количестве воздуха факел получается растянутым, топливо полностью не сгорает, что приводит к потере тепла. Чрезмерное количество воздуха недопустимо вследствие повышенных потерь тепла с отходящими дымовыми газами и более интенсивного окисления (окалинообразования) поверхности нагрева.

    Воздух, необходимый для горения, часто подводят к устью форсунки, т.е. к началу факела. В некоторых форсунках топливо распыляется воздухом, который в этом случае вводится в топку совместно с топливом.

    Во внутренней полости стен печей ряда конструкций размещается канал для подачи так называемого вторичного воздуха, позволяющий подводить необходимый для горения воздух по длине факела, что повышает температуру излучающей стенки и способствует более равномерной передаче тепла радиацией.

    В такой печи тепло излучением передается от факела, излучающей стенки и трехатомных газов (двуокись углерода, водяной пар, диоксид серы), обладающих избирательной способностью поглощать и излучать лучи определенной длины волны.

    Часть лучей через пространство между трубами попадает на поверхность кладки, вдоль которой расположены эти трубы; эти лучи разогревают кладку, и она, в свою очередь, излучает; при этом часть энергии поглощается той частью поверхности труб, которая обращена к стенке кладки.

    Средняя излучающая стена с настильным пламенем, а также прочие стены кладки, у которых расположены трубы (экранированная часть кладки) или свободные от труб (незаэкранированные), принято называть вторичными излучателями.

    Радиантные трубы получают тепло не только излучением, но также и от соприкосновения дымовых газов с поверхностью труб, имеющих более низкую температуру (теплопередача свободной конвекцией). Из всего количества тепла, воспринятого радиантными трубами, значительная часть (85-90 %) передается излучением, остальное конвекцией.

    Наружная поверхность труб в свою очередь излучает некоторое количество тепла, т.е. имеет место процесс взаимоизлучения, однако температура поверхности труб вследствие непрерывного отвода тепла сырьем, проходящим через трубы, значительно ниже температуры других источников излучения и поэтому в итоге взаимоизлучения через поверхность радиантных труб сырью передается необходимое количество тепла.

    В результате теплопередачи, осуществляемой в топочной камере, дымовые газы охлаждаются и поступают в камеру конвекции, где происходит их прямое соприкосновение с более холодной поверхностью конвекционных труб (вынужденная конвекция).

    В камере конвекции передача тепла осуществляется также и за счет радиации трехатомных дымовых газов и от излучения стенок кладки. Наибольшее количество тепла в камере конвекции передается путем конвекции; оно достигает 60-70 % общего количества тепла, воспринимаемого этими трубами. Передача тепла излучением от газов составляет 20-30 %; излучением стенок кладки конвекционной камеры передается в среднем около 10 % тепла.

    Основным фактором, предопределяющим эффективность передачи тепла конвекцией, является скорость движения дымовых газов, поэтому при конструировании трубчатых печей стремятся обеспечить ее наибольшее значение. Это достигается размещением минимального числа труб в одном горизонтальном ряду и выбором минимального расстояния между осями труб. Однако, при повышении скорости дымовых газов в камере конвекции увеличивается сопротивление потоку газов, что и ограничивает выбор величины скорости. С другой стороны, сокращение числа труб в одном горизонтальном ряду приводит к увеличению высоты камеры конвекции. Это обстоятельство также предопределяет выбор допустимой скорости движения дымовых газов в камере конвекции.

    Существенным фактором, влияющим на эффективность передачи тепла, является способ размещения труб в камере конвекции. При расположении труб в шахматном порядке тепло передается эффективнее, чем при расположении коридорным способом, в связи с более интенсивной турбулентностью потока дымовых газов и лучшей обтекаемостью ими труб. При одинаковой скорости движения дымовых газов шахматное расположение труб обеспечивает более эффективную (на 20-30 %) передачу тепла по сравнению с коридорным.

    Уменьшение диаметра труб также способствует более интенсивной передаче как за счет лучшей обтекаемости труб, так и в связи с возможностью более компактного их расположения, позволяющего создать более высокие скорости дымовых газов. Однако при уменьшении диаметра печных труб увеличивается скорость сырья и, следовательно, повышается сопротивление перемещению нагреваемого потока.

    Во избежание повышенного сопротивления при применении печных труб меньшего диаметра, а также для печей большой производительности движение сырья осуществляется двумя или несколькими параллельными потоками.

    Эффективность передачи тепла может быть повышена путем оребрения наружной поверхности конвекционных труб, так как в камере конвекции передача тепла сырью, проходящему через трубы, лимитируется в основном теплообменом со стороны дымовых газов и поэтому при оребрении увеличивается поверхность соприкосновения дымовых газов с трубами и обеспечивается передача большего количества тепла.

    Передача тепла конвекцией зависит и от температурного напора, т.е. от разности температур между дымовыми газами и нагреваемым сырьем. Обычно эта разность температур убывает в направлении движения дымовых газов, так как температура дымовых газов снижается на большую величину, чем при этом повышается температура сырья.

    При повышении температуры сырья на один градус дымовые газы охлаждаются на пять-семь градусов. Наибольший температурный напор наблюдается при входе дымовых газов в камеру конвекции, а наименьший при их выходе. По этой причине в направлении движения дымовых газов убывает и количество тепла, поглощаемого трубами.

    Доля тепла, передаваемого излучением в камере конвекции, значительно меньше, чем в камере радиации, как вследствие более низкой температуры газов, так и из-за меньшей толщины излучаемого газового потока. В камере конвекции эффективная толщина газового слоя предопределяется расстоянием между смежными рядами труб. Снижение температуры дымовых газов в направлении их движения, естественно, вызывает также и уменьшение передачи тепла излучением от них.

    Конвекционные трубы, расположенные в первых рядах по ходу дымовых газов, получают больше тепла, как за счет конвекции, так и излучения и поэтому в отдельных случаях их теплонапряженность может быть выше теплонапряженности радиантных труб.
      1   2   3


    написать администратору сайта