лекции по гигиене. Пивоваров Ю. П. Гигиена и экология человека (Курс лекций)
Скачать 1.7 Mb.
|
МИКРОЭЛЕМЕНТЫ Железо. Необходимо для биосинтеза соединений, обеспечивающих дыхание, кроветворение, участвует в иммунобиологических и окислительно- восстановительных реакциях, входит в состав цитоплазмы, клеточных ядер и ряда ферментов. Ассимиляции железа препятствует щавелевая кислота и фитин. Для усвоения необходим В 12 и аскорбиновая кислота. Потребность: мужчины — 10 мгв сутки женщины —18 мг в сутки. При дефиците железа развивается малокровие, нарушается газообмен, 170 клеточное дыхание. Содержится: в субпродуктах, мясе, яйцах, фасоли, овощах, ягодах, хлебопродуктах. Однако в легкоусвояемой форме железо находится только в мясных продуктах, печени, яичном желтке. 171 Лекция 12 Значение витаминов в питании человека. Пищевые продукты — источники витаминов Уже давно человечество заметило, что при длительном однообразном питании, в случаях исключения каких-то продуктов из рациона, особенно в условиях длительных экспедиций, довольно часто возникали различные заболевания. На первый взгляд не виделось первопричины. Однако с накоплением этого опыта становилось ясно, что в пище присутствуют какие-то специфические компоненты в очень небольших количествах, но обладающие большим регулирующим действием на обмен веществ. В 1880 г. русский ученый Николай Иванович Лунин, поставив эксперимент на животных, высказал следующее: "Если невозможно обеспечить жизнь белками, жирами, углеводами, минеральными солями и водой, то из этого следует, что в пище содержатся и другие вещества, необходимые для питания". Позднее этот взгляд подтвердил в эксперименте голландский ученый Эйкман при оценке характера питания заключенных, присланных из метрополии на острова Ява и Морадур (Индонезия). Начиная питаться полированным рисом, у заключенных быстро развивались явления периферического полиневрита. И в то же время при использовании воды, в которой рис предварительно замачивался, симптомы полиневрита смягчались. В 1911 г. польский ученый Казимир Функ, помня о наблюдениях Эйкмана, из настоя отрубей риса выделил вещество, содержащее аминную группу, которое у подопытных животных приводило к исчезновению явлений полиневрита. Функ назвал эту аминную группу "амином жизни", т.е. "Витамин". Впоследствии, при открытии других витаминов, аминных групп не обнаруживалось, но название "витамин" прочно вошло в лексику научных 172 исследований, неся определенную смысловую нагрузку. В 1912 г. Гопкинс, использовав данные Лунина, Эйкмана, Функа и собственные исследования, определенно высказал мысль, что все витамины (или почти все) не синтезируются в организме. А все заболевания, связанные с недостаточностью витаминов, следует считать болезнями пищевой недостаточности. "В настоящее время большинство витаминов — это низкомолекулярные соединения органической природы, не синтезирующиеся в организме человека, поступающие извне в составе пищи, не обладающие энергетическими и пластическими свойствами и проявляющие биологическое действие в малых дозах". Биохимическая сущность витаминов, веществ разнообразных по своей химической природе, сводится главным образом к осуществлению каталитических функций. Находясь в составе ферментов, они катализируют реакции превращения белков, жиров, углеводов, причем отдельные химические процессы катализируются одновременно несколькими взаимодействующими витаминами. При этом свои функции биокатализаторов витамины выполняют, находясь в тканях организма в относительно малых количествах. Свою столь активную роль в обменных процессах большинство витаминов выполняют, находясь в составе ферментов. К настоящему времени известно свыше 100 тканевых и клеточных ферментов, в состав которых входят витамины и примерно столько же различных биохимических реакций, невозможных без витаминов. В состав специфического фермента витамины входят в виде простетической группы небелкового порядка — кофермента, который вступает в соединение с белковым ингредиентом — апоферментом, синтезируемым в организме. Сами же витамины, как правило, в организме не синтезируются и должны поступать извне, с пищей. В настоящее время известно более 20 витаминов и витаминоподобных веществ. Важнейшие из них сгруппированы в таблице 1 на основании 173 характера физиологического влияния на организм. При нарушении обмена витаминов в организме могут наблюдаться такие патологические состояния, как гиповитаминозы и авитаминозы. Несмотря на то, что с момента открытия витаминов прошло более 100 лет, вопрос изучения роли последних до настоящего времени остается актуальным. По данным ВОЗ, и в наши дни наблюдаются массовые заболевания берибери, пеллагрой, рахитом, сезонные заболевания цингой. В чистой форме авитаминозы не встречаются, однако гиповитаминозные состояния наблюдают довольно часто (по данным ВОЗ, 80% населения земного шара страдают гиповитаминозными состояниями). Причины нарушения витаминного обмена довольно многообразны. Принято выделять две основные группы факторов, обусловливающих развитие витаминной недостаточности: экзогенные, внешние причины, приводящие к первичным гипо- и авитаминозам; и эндогенные, внутренние, обусловливающие развитие вторичных гипо- и авитаминозов. По механизму развития витаминной недостаточности различают несколько форм: Алиментарная форма обусловлена недостаточным поступлением витамина с пищей или возникает при нормальном поступлении витаминов, но при нарушении соответствия компонентов в рационе. Так установлено, что увеличение углеводов в рационе требует увеличения суточной нормы витамина В 1 что, в свою очередь, увеличивает расход также витаминов В 2 и С. Однако, несмотря на большую роль качественных нарушений режима питания, основное практическое значение приобретают нарушения количественные, связанные с понижением содержания отдельных витаминов в готовой пище. Главнейшими причинами снижения количества отдельных витаминов в готовой пище являются: а) неправильное хранение продуктов, в том числе овощей, приводящее к разрушению некоторых витаминов (особенно витамина С); б) одностороннее питание, особенно с выключением овощей, 174 являющихся основными поставщиками витаминов С, Р и др.; в) нарушение правил кулинарной обработки продуктов, которые вместе с неудовлетворительным их хранением могут приводить к значительному уменьшению количества витаминов в готовой пище; г) неправильное хранение и задержка выдачи готовых блюд. Обычно эти причины сочетаются между собой, наносят серьезный ущерб содержанию витаминов в суточном рационе, приводя к развитию алиментарных форм витаминной недостаточности. Резорбционная форма обусловлена причинами внутреннего порядка. Среди этих причин наибольшее внимание заслуживает частичное разрушение витаминов в пищеварительном тракте и нарушение их всасывания Так установлено, что при заболеваниях желудка, сопровождающихся понижением кислотности желудочного сока, тиамин (т.е. В 1 , никотиновая кислота (витамин РР), а также витамин С подвергаются значительному разрушению. При резекции пилорического отдела желудка легко развивается пеллагра, т.е. авиминоз РР, а при поражении дна желудка — гиперхромная анемия Аддисон- Бирмера, являющаяся витамин 512-дефицитной анемией. При язвенной болезни желудка и двенадцатиперстной кишки нарушается обмен витаминов А, С, никотиновой кислоты, каротина. Различного рода заболевания кишечника приводят к понижению всасывания различных витаминов, что также может приводить к гиповитаминозам. Дессимиляционная форма связана с физиологическими сдвигами в обмене веществ, в том числе витаминов. Эта форма гиповитаминозов может наблюдаться: при нарушении соотношения отдельных компонентов пищи (о чем уже говорилось выше), при физической и нервной нагрузке, при работе в условиях низкого парциального давления кислорода (например, в горной местности), при работе в условиях высокой температуры, низкой температуры (особенно при сочетании с УФЛ-недостаточностью), при ряде заболеваний (особенно инфекционных), при лечении сульфаниламидами и антибиотиками (в силу влияния на кишечную микрофлору и связанное с этим нарушение синтеза бактерий отдельных витаминов). Перейдем к детальному рассмотрению физиологической роли витаминов и источников обеспечения ими организма человека. Как вам известно, все витамины делятся на водорастворимые и жирорастворимые. Рассмотрим первую группу. Наиболее важным витамином этой группы является витамин С. 175 Таблица 1. Вызываемый эффект Название витамина Физиологический характер Повышающие общую резистентность организма В 1 , В 2 , РР, В 6 , А, С, Д Регулируют функциональное состояние ЦНС, обмен веществ и трофику тканей Антигеморрагические С,Р,К Обеспечивают нормальную проницаемость и резистентность кровеносных сосудов, повышают свертываемость крови Антианемические В 12 , С, В 9 (фолиевая кислота) Нормализуют и стимулируют кроветворение Антиинфекционные А, С, группа В Повышают устойчивость организма к инфекциям: стимулируют выработку антител, усиливают фагоцитоз, усиливают защитные свойства эпителия, нейтрализуют токсическое действие возбудителя Регулирующие зрение А, В 2 , С Обеспечивают адаптацию глаза к темноте, усиливают остроту зрения, расширяют поле цветного зрения Антиоксиданты С,Е Защищают структурные липиды от окисления Таблица 2. Влияние условий труда и заболеваний на потребность организма в витаминах С (мг) В, (мг) В, (мг) РР (мг) А (мг) Д и Е При среднем по тяжести физическом труде в обычных условиях 70 2 2,5 15 1,5 300 При работе на высоте 1500-3000 м 100-125 5-7 5 30-40 3-4 300-500 При работе на высоте свыше 3000 м 125-150 7-10 8 40-50 4-5 300-500 В условиях высокой температуры с выполнением тяжелой работы (горячие цеха) 100-150 5-7 4-5 30 2-3 300-500 В условиях работы на Крайнем Севере 120-150 5 5 30-40 3 1000 При инфекционных заболеваниях 300-500 до 10 4-5 30-40 Д015 300-500 176 Витамин С. Витамин С играет важную роль в окислительно- восстановительных процессах в организме. Способность аскорбиновой кислоты окисляться связана с наличием диэтиловой группы. В процессе окисления аскорбиновая кислота превращается в дегидроаскорбиновую, которая также выполняет витаминную функцию, так как может восстанавливаться в аскорбиновую кислоту (под действием глютатиона). Однако дегидроаскорбиновая кислота — вещество малостойкое и продукты ее превращения витаминными свойствами не обладают. Аскорбиновая кислота оказывает специфическое влияние на стенки капилляров. Недостаток ее ведет к увеличению проницаемости сосудистой стенки, нарушению целостности опорных тканей мезенхимального происхождения — фиброзной, хрящевой, костной, дентина. Благодаря своему влиянию на процессы обмена тирозина и фенилаланина аскорбиновая кислота регулирует обмен белков. Определенное влияние аскорбиновая кислота оказывает и на обмен углеводов, хотя влияние это осуществляется не непосредственно, а через сложную симпатико-адреналовую систему. Аскорбиновая кислота оказывает влияние также на процессы регенерации, на функциональное состояние ЦНС, обмен холестерина, иммунобиологические реакции организма. Естественный биологический комплекс витамина С состоит не только из аскорбиновой кислоты. Он включает в себя Р-активные вещества, дубильные вещества, органические кислоты, пектины, которые, с одной стороны, способствуют сохранению аскорбиновой кислоты, с другой — усиливают ее биологической действие. Нормальное содержание витамина С (в крови 0,7-1 мг%) подвержено большим колебаниям в зависимости от поступления его с пищей. В организме взрослого здорового человека содержится около 5000 мг витамина С. Запасы эти не пассивные, они активно участвуют в процессах обмена веществ. Больше всего витамина С сосредоточено в печени, сердце, почках и ткани мозга, лейкоцитах и железах внутренней секреции, что, очевидно, связано с более интенсивным обменом веществ в этих органах. Недостаточное поступление витамина С с пищей проявляется в форме авитаминоза (цинги) или в виде С-гиповитаминозного состояния. При гиповитаминозном состоянии имеются лишь субъективные признаки, выражающиеся в понижении общего тонуса организма (слабость, 177 апатия, понижение работоспособности, быстрая утомляемость, сонливость). Люди с гиповитаминозом С более подвержены заболеваниям, причем заболевания эти протекают, как правило, более длительно и тяжело. Особенно часто С-гиповитаминозные состояния возникают в период повышенной потребности организма в витамине С: при беременности, кормлении, усиленной физической и умственной работе, при инфекционных заболеваниях и т.д. Чаще гиповитаминозы С можно наблюдать в весенние месяцы, когда, с одной стороны, уменьшается употребление овощей, а с другой — снижается содержание в них витаминов вследствии длительного хранения. К тому же отмечено, что увеличение УФЛ-радиации, которая наблюдается в весенние месяцы, приводит к повышенному расходу витамина С тканями организма. Суточная потребность (физиологическая норма) потребления зависит от возраста, пола, среды обитания. Если говорить о взрослом населении, то эта норма составляет: для женщин — 65 мг, мужчин —70 мг в сутки. Эта величина в организме как бы делится на две составляющие. Первая — антискорбутная величина (20-35 мг), т.е. чисто специфическое назначение для поддержания резистентности сосудистой системы, и вторая — величина общего назначения (35-40 мг) — для поддержания нормального состояния внутренней среды. Потребность возрастает при интенсивных физических нагрузках (в том числе и спортивных), при воздействии высоких и низких температур, при наличии инфекционных заболеваний. Исследования, проведенные группой сотрудников Института питания РАМН, показали, что у рабочих горячих цехов при обычном содержании витамина С в пищевом рационе наблюдается дефицит этого витамина в организме. Для обеспечения потребности организма в витамине С его доза должна быть увеличена до 150 и даже 200 мг. Более высокие дозы витамина С требуются и для обеспечения нормальных потребностей в этом витамине у жителей Крайнего Севера. Так, Пушкина считает, что суточная доза этого витамина для жителей Крайнего Севера должна быть не ниже 150-250 мг, особенно для лиц, занятых тяжелым физическим трудом. Повышенная 178 потребность в витамине С наблюдается также у рабочих, имеющих контакт с различными токсическими веществами (свинец, мышьяк, фосфор, бензол), а также радиоактивными веществами. Проведенные в последние годы исследования показали, что с развитием механизации и автоматизации производственных процессов, снижающих энергетические траты, потребность работающих в витаминах (в том числе в витамине С) не только не снижается, а, наоборот, повышается, что связано с ростом нервно-психической нагрузки. Источниками витамина С являются в основном продукты растительного происхождения: фрукты, ягоды овощи. По количественному содержанию витамина С все растительные продукты могут быть разбиты на три группы. Первую группу составляют продукты, содержащие свыше 100мг% витамина С. К ним относятся шиповник, зеленый горошек, грецкий орех, черная смородина, красный перец, ягоды сибирской облепихи, брюссельская капуста. Вторую группу составляют продукты, содержащие витамин С в количествах от 50 до 100 мг%. Это красная и цветная капуста, клубника, ягоды рябины. И, наконец, к третьей группе относятся витамине носители средней и слабой активности. Продукты это группы содержат не более 50мг% витамина С. К витаминоносителям средней активности относятся: белокочанная капуста, зеленый лук, цитрусовые, антоновские яблоки, зеленый горошек, малина, томаты, брусника, а также продукты животного происхождения — кумыс (25 мг%), печень (20 мг%). К источникам витамина С слабой активности (до 10 мг%) относятся картофель, репчатый лук, морковь, огурцы, свекла. Содержание витамина С в различных растительных продуктах может варьировать в довольно широких пределах в зависимости от условий выращивания почвы, сорта, климатического пояса. Установлено, что в овощах, выращенных на Севере, содержание витамина С значительно ниже, чем в овощах средней полосы. Вместе с тем у коренных жителей Крайнего Севера авитаминоза С, как правило, не наблюдается. Это связано с тем, что на Севере значительно выше содержание витамина С в продуктах животного 179 происхождения, составляющих основные продукты рациона питания местного населения: Продукт Содержание мясо оленя 10 мг% мясо рогатого скота 1-2 мг% сердце оленя 12-22мг% сердце рогатого скота 3,8 мг% печень оленя 60-130 мг% печень рогатого скота 6-20 мг% рыба на севере 10 мг% Большое значение в качестве источника витамина С на Севере имеют местные дикорастущие растения, такие как шиповник, рябина, синика, морошка и др. Большое количество витамина С можно получить из листьев различных ягодников (малина, черника, черная смородина), где он содержится до 600-700 мг%. Настои из листьев этих и ряда других ягод, а также из хвои могут применяться для обеспечения потребности организма в витамине С в случаях, когда получение его за счет естественных источников в рационе (овощей, фруктов) не может быть по каким-то причинам достигнуто. Например, в условиях длительных экспедиций, военно-полевых условиях и т.д. Витамин С относится к наименее устойчивым витаминам. Как уже указывалось выше, основным источником этого витамина являются овощи, однако не следует забывать, что даже при достаточном содержании овощей в пищевом рационе может наблюдаться витаминная недостаточность, так как при неправильной кулинарной обработке содержание витамина С в них может снижаться на 75-80 % и более. Аскорбиновая кислота легко окисляется и при этом теряет свою биологическую активность. Наиболее интенсивное ее окисление идет в растворах, особенно со щелочной реакцией, в присутствии кислорода. Процессу окисления витамина С способствуют соли тяжелых металлов, прежде всего меди и железа. Поступая в воду из котлов при варке пищи, из посуды и 180 кухонного инвентаря, из водопроводной воды, соли этих металлов катализируют процессы окисления аскорбиновой кислоты. На окисление аскорбиновой кислоты влияют также ферменты (аскорбиназа и аскорбиноксилаза), содержащиеся в растительных продуктах. От количества данных ферментов в продукте в значительной мере зависит сохранность в нем витамина С. Наибольшая активность этих ферментов отмечается при температуре 30-50° С и прекращается при кипении продукта. Разрушают витамин С и солнечные лучи. Так, уже рассеянный свет в течение 5-6 минут разрушает 64% витамина С в молоке, а прямые солнечные лучи за это же время разрушают до 90% аскорбиновой кислоты. При сушке плодов на солнце витамин С разрушается почти полностью, вследствие чего сухофрукты аскорбиновой кислоты не содержат. При сублимационной сушке ягод удается сохранить некоторое количество витамина С, хотя и сниженное на 70-80%. К низкой температуре аскорбиновая кислота достаточно устойчива, однако при оттаивании разрушается очень интенсивно. Большое значение для сохранения витамина С в продуктах имеет правильная организация хранения овощей. Первым фактором, определяющим потерю овощами витамина С, является время хранения. Установлено, что в течение зимы овощи теряют до 45% витамина С. Однако степень разрушения аскорбиновой кислоты зависит не только от времени хранения, но и от средней температуры воздуха и доступа его в хранилище. Так, по данным Марха, в среднем за 9 месяцев хранения томатной продукции потери витамина С составляют: при 2° С — 10%, при 16-18° С — 20%, а при 37° С — около 64%. Лучше других овощей сохраняет витамин С капуста. Квашеная капуста, покрытая рассолом, в течение 6-7 месяцев почти не теряет витаминной ценности. Такая же капуста в открытой посуде без рассола за 24 часа теряет около 75% аскорбиновой кислоты. Замораживание капусты снижает содержание витамина С на 20-40%, а при последующем ее оттаивании — до 70- 80%. Неизбежная потеря витамина С происходит и при подготовке овощей к 181 тепловой обработке. Так, в процессе очистки картофеля теряется около 22% витамина С. В вареной картошке "в мундире" содержание витамина С снижается до 30%, в тушеной капусте — на 65%, в картофельном пюре — на 44%, в супе-рассольнике —на 36%, в кислых щах — на 34%. Все эти данные свидетельствуют о том, что аскорбиновая кислота сохраняется в продуктах и готовой пище в относительно больших количествах только при определенных условиях, несоблюдение которых обычно ведет к значительному разрушению этого витамина, а следовательно, к обеднению пищи. Поэтому при расчете рационов необходимо увеличивать количество продуктов с витамином С для того, чтобы в готовом продукте его количество составило необходимую величину. |