Главная страница
Навигация по странице:

  • Пищевые источники.

  • Рекомендуемые нормы потребления цинка

  • Микроэлементы

  • Бром.

  • Сви н е ц .

  • Диетология. Барановский Ю.А. 2008г.. Под редакцией А. Ю. Барановского


    Скачать 30.37 Mb.
    НазваниеПод редакцией А. Ю. Барановского
    АнкорДиетология. Барановский Ю.А. 2008г..pdf
    Дата01.03.2017
    Размер30.37 Mb.
    Формат файлаpdf
    Имя файлаДиетология. Барановский Ю.А. 2008г..pdf
    ТипДокументы
    #3244
    страница15 из 62
    1   ...   11   12   13   14   15   16   17   18   ...   62
    Потребность в железе. Мужчины и неменструирующие женщины при отсутствии патологического кровотечения могут получать железо, в котором они нуждаются, из общепринятого рациона (12–18 мг в день). Однако многие менструирующие женщины и юные девочки, которые из-за беспокойства о своем весе ограничивают рацион, часто имеют низкое потребление железа – менее
    10 мг в день. Потребность в течение беременности часто настолько большая, что она превышает количество железа, которое поступает из диеты. Дополнительная терапия железом для предотвращения его дефицита необходима в течение второй половины беременности и от 2 до 3 месяцев в течение послеродового периода. Адекватная терапия должна не только исправить дефицит, но также воздействовать и на его причину.
    Безопасное потребление при диетическом питании – 45 мг/сут.
    Пищевые
    источники. Здоровые люди абсорбируют приблизительно 5-10 %
    диетического железа, а в условиях его дефицита – 10–20 %. Всасывание железа из пищи очень изменчиво. Самое большое из мяса млекопитающих – говядины, меньше – из мяса домашней птицы или рыбы и меньше всего – из печени, яиц, молока и хлебных злаков. В
    целом оно больше у детей, чем у взрослых.
    Железо плохо абсорбируется из ростков пшеницы, масла бобовых, шпината, чечевицы и зелени свеклы – пищевых продуктов с высоким содержанием фитата. Напротив, хорошая абсорбция железа из моркови, картофеля, корней свеклы, тыквы, брокколи, помидоров,
    цветной капусты, белокочанной капусты, репы и квашеной капусты – овощей, которые содержат существенные количества яблочной, лимонной или аскорбиновой кислоты.
    В диете западного типа всасывание железа обеспечивается включением в рацион говядины, домашней птицы или рыбы и аскорбиновой кислоты. Пища, которая состоит преимущественно из пиццы, гамбургеров или спагетти с сыром, приводит к недостаточному всасыванию железа, даже если в них присутствуют мясные и рыбные продукты. Возможно,
    фитаты, содержащиеся в тесте, ингибируют его. Растворимое неорганическое железо,
    добавляемое в пищу, абсорбируется в той же самой мере, как и железо, свойственное пище.

    В ряде стран используются обогащенные железом продукты. Обычный метод для обогащения муки железом предполагает введение металлического порошка. Используется металлическое железо, потому что хлеб, содержащий добавленное растворимое железо
    (сульфат железа), вскоре начинает неприятно пахнуть. Интересно, что исследование,
    проводимое в Швеции, где хлеб долгое время насыщали большим количеством железа, не выявило нежелательного эффекта на людей, являющихся гомозиготами по наследственному гемохроматозу. Хотя в качестве транспортного средства для железа чаще используется мука пшеницы, с этой целью могут применяться другие продукты. Сахар, соль, соусы и приправы подходят для добавки в них железа.
    Цинк
    Роль цинка была признана в 1909 г. После подтверждения в 1961 г. предположения о том, что местный гипогонадизм и карликовость сельского населения Ирана вызывает дефицит цинка, возрос интерес к значимости его дефицита для здравоохранения. Цинк выполняет множество разнообразных функций. Он является компонентом биологических мембран; необходим для РНК, ДНК, а также стабилизации рибосом, связан с множеством факторов транскрипции; стабилизирует некоторые гормон-рецепторные комплексы. Не удивительно, что дефицит его может приводить к серьезным физиологическим нарушениям.
    В биологических системах цинк фактически всегда находится в двухвалентном состоянии.
    Метаболизм цинка
    У взрослых общее содержание цинка в теле составляет приблизительно 1,5 г у женщин и 2,5 г – у мужчин. Цинк присутствует во всех органах, тканях, жидкостях и секретах организма. Более 95 % всего цинка содержится в клетках. Отсутствует какое-либо определенное депо цинка, поэтому сокращение потребления цинка с пищей быстро приводит к симптомам его дефицита. Главный путь для экскреции цинка – желудочно- кишечный трактат. Фекальные потери цинка состоят из неабсорбированного из диеты и секретированного эндогенно цинка. Панкреатическая секреция – основной источник эндогенного цинка. Количество цинка, секретируемого в кишку, изменяется в зависимости от его потребления. Приблизительно 400–600 мкг выделяется ежедневно с мочой. Состояния катаболизма (тяжелые ожоги, операции, травмы, а также голодание) приводят к клинически значимому увеличению потерь цинка с мочой. Поверхностные потери через десквамацию кожи, рост волос и с потом составляют до 1 мг/сут. Цинк теряется со спермой и менструальным секретом.
    Дефицит цинка
    Симптомы дефицита цинка – прекращение роста, гипогонадизм и задержка полового созревания; изменения кожи. Эритематозная, везикулобуллезная и пустулезная сыпь имеет характерное распределение: прежде всего она появляется на конечностях и коже в области естественных отверстий. Высыпания могут стать распространенными. Изменения волос обычно следуют после возникновения дерматита.
    Волосы могут стать гипопигментированными, приобрести красноватый оттенок. Характерная особенность –
    очаговая потеря волос.
    Выраженный дефицит цинка наблюдается у пациентов с врожденным, генетически детерминированным энтеропатическим акродерматитом, при полном ПП. Клинически проявляется диареей, нарушениями иммунной системы. Дефицит цинка оказывает влияние на роговицу – ткань с самым высоким его содержанием. Возникает отек роговицы, который может приводить к ее помутнению. Может развиться умеренный сухой конъюнктивит и
    прогрессировать до двустороннего ксероза и кератомаляции. При дефиците цинка могут наблюдаться изменения поведения: раздражительность, сонливость и депрессия; анорексия,
    измененное восприятие запахов и вкусовых ощущений. У некоторых лиц развивается выраженный тремор, атаксическая походка и появляется нечленораздельная речь.
    Возникновение изолированного дефицита цинка у здоровых взрослых людей не наблюдалось и вряд ли оно вообще возможно из-за прекрасной способности организма уменьшать его потери при низком поступлении с пищей. Однако если потребность в цинке возрастает, то у новорожденных и детей или у беременных и кормящих женщин угроза для развития дефицита цинка возрастает, особенно при неадекватном его поступлении.
    Другие причины: чрезкожные потери при чрезмерном потоотделении и потеря при хроническом желудочно-кишечном кровотечении
    (например, при воспалительных заболеваниях кишечника). Из-за высокого потребления фитата вегетарианство является фактором риска для развития дефицита цинка, особенно у лиц, потребляющих рационы,
    состоящие из хлебных злаков.
    Цинк незаменим для нормального роста и развития. Поэтому потребность в цинке увеличивается в течение беременности. Она невелика: приблизительно 100 мг или дополнительное потребление 0,6 мг/сут цинка на протяжении беременности. Материнская заболеваемость, связанная с дефицитом цинка, включает длительные роды, атонические кровотечения и преждевременные роды.
    Среднее потребление цинка пожилыми людьми – менее чем 2/3 рекомендуемой суточной потребности. Показано, что пожилые и старые люди выбирают те рационы,
    которые обеспечивают от 7 до 11 мг цинка в день, или 47–73 % нормы. Мужчины и женщины старше 75 лет употребляют на 26 и 15 %, соответственно, меньшее количество энергии ежедневно, чем молодые люди. Кроме того, они едят на 31 и 17 %, соответственно,
    меньшее количество мяса, рыбы или домашней птицы, чем молодые. Эти различия в количестве и типах пищевых продуктов объясняют низкое в среднем потребление цинка пожилыми и старыми людьми, поэтому в условиях, когда усвоение или обмен цинка нарушен, пожилые и старые люди более склонны к развитию его дефицита. Несколько факторов могут увеличивать риск развития дефицита цинка в старших возрастных группах, а именно: уменьшение способности к абсорбции цинка, увеличение вероятности заболеваний,
    что изменяет утилизацию цинка, применение лекарств (мочегонных средств), которые увеличивают мочевую экскрецию цинка и употребление волокон, кальция или добавок железа, которые могут изменять биодоступность цинка. Некоторые частые для старых лиц проблемы могут быть обусловлены дефицитом цинка в организме: медленно заживающие раны, анорексия, дерматиты, сниженная острота вкуса, нарушения функции иммунной системы.
    Заболевания, связанные с дефицитом цинка
    – заболевания желудочно-кишечного тракта (болезнь Крона, спру, синдром короткой кишки, обходной еюноилеальный анастомоз) приводят к уменьшению всасывания цинка из пищи и нарушению его энтеропанкреатической циркуляции;
    – у пациентов с алкогольным циррозом печени часто возникает гиперцинкурия,
    гипоцинкемия и низкая концентрация цинка в печени, в сравнении с пациентами без цирроза печени; гипоцинкемия часто встречается у алкоголиков с заболеванием печени, но она также наблюдается у некоторых алкоголиков (30–50 %) без явного поражения печени;
    – сахарный диабет может сопровождаться гиперцинкурией, которая увеличивается с
    тяжестью диабета и приводит к дефициту цинка у некоторых больных.
    Токсичность цинка
    Редко, но сообщалось об острой интоксикации цинком у людей, обусловленной его избыточным потреблением. Отдельные эпизоды интоксикации произошли в результате потребления пищевых продуктов и напитков, хранившихся в гальванизированных контейнерах. Признаки острого отравления цинком: боль в эпигастрии, диарея, тошнота и рвота. Доза более 200 мг/сут – рвотное средство. При хронической интоксикации наблюдается вторичный дефицит меди, вызванный конкурентными взаимодействиями между этими элементами при абсорбции в кишечнике. Длительное потребление добавок цинка (более 150 мг/сут) приводит к появлению эрозий в желудке и снижает функцию иммунной системы.
    Потребности в цинке и его пищевые источники
    Потребность в цинке приведена в табл. 7.3.
    Пищевые источники цинка. Пищевые продукты очень отличаются по содержанию в них цинка. В яичном белке, например, содержание цинка составляет 0,02 мг/100 г, в легкоусвояемом мясе – 1 мг/100 г, а в устрицах – 75 мг/100 г. Красное мясо, печень, яйца и дары моря являются хорошими источниками цинка. Цистеин и гистидин увеличивают абсорбционную способность цинка.
    Таблица 7.3 Рекомендуемые нормы потребления цинка
    Хлебные злаки из цельного зерна наиболее богаты цинком. Большее количество его содержится в отрубях и зародышевых частях зерна и почти 80 % теряется в процессе размалывания пшеницы. Но продукты из цельных зерен и белки растений, такие как белки сои, содержат цинк в менее доступной форме из-за фитиновой кислоты, содержащейся в пищевых продуктах растительного происхождения. Удаление фитата из пищи может значительно увеличить абсорбцию цинка. Брожение теста уменьшает содержание фитиновой кислоты и значительно улучшает всасывание цинка. Орехи и бобы –
    относительно хороший растительный источник этого элемента. Концентрация цинка в растении увеличивается, если оно вырастает на богатой цинком или обработанной удобрениями почве.
    Потребление цинка коррелирует с потреблением белка, но точная взаимосвязь зависит от пищевого источника. Диеты, состоящие в основном из яиц, молока, домашней птицы и рыбы, имеют более низкое содержание цинка и белка чем те, которые состоят из морепродуктов, говядины и другого красного мяса. Те вегетарианские диеты, которые состоят из большого количества бобов, цельного зерна, орехов и сыра, богаты содержанием цинка и белка притом, что в рационах с его низким содержанием представлены, прежде всего фрукты и овощи. Питьевая вода обычно имеет низкий уровень содержания цинка.
    Пищевые взаимодействия. Большое количество потребляемого цинка может нарушать биодоступность меди. Относительно низкий уровень потребления цинка повышают абсорбцию меди. Клинические признаки дефицита меди развиваются у лиц, принимающих
    150 мг цинка в день в течение 2 лет. Высокое потребление меди не ингибирует всасывание
    цинка.
    Хотя высокий уровень пищевого кальция может мешать всасыванию цинка у животных,
    дополнение солей кальция в рацион людей обычно не нарушает баланс цинка. Добавки
    50 мг олова увеличивали экскрецию цинка с калом. Однако этот элемент ухудшает всасывание цинка в обычных рационах.
    Фолиевая кислота может вредить всасыванию цинка, когда потребление цинка с пищей недостаточное. Это имеет значение при беременности, когда женщинам часто назначают дополнительно фолиевую кислоту.
    Медь
    С лечебной целью медь использовалась с 400 г до н. э. Еще Гиппократ предписывал ее соединения для лечения легочных и других заболеваний. Использование препаратов меди для лечения болезней достигло своего пика в девятнадцатом веке.
    Метаболизм меди
    Часть меди из рациона абсорбируется в кишечнике, транспортируется с портальной кровью в печень и соединяется с церулоплазмином. Церулоплазмин поступает в кровь и поставляет медь тканям. Наибольшее количество эндогенной меди секретируется желудочно-кишечным трактом, где она объединяется с непоглощенной из пищи медью и элиминируется. Другие пути экскреции имеют меньшее значение.
    Дефицит меди
    Признаки дефицита – нормоцитарная и гипохромная анемия (иногда нормохромная и микроцитарная), лейкопения и нейтропения. Часто наблюдается остеопороз, могут возникать переломы в краях метафизов. Явный дефицит меди сопровождается гипокупремией и низким уровнем церулоплазмина (до 30 % от нормы и ниже).
    Кроме того, при умеренном дефиците меди (при потреблении ее в количестве,
    соответствующем нижней границе нормы в течение длительного периода) возможны следующие состояния: артрит, потеря пигментации, заболевания миокарда и
    неврологические симптомы. Нарушение толерантности к глюкозе, гиперхолестеринемия и тахикардия тоже могут быть связаны с низким потреблением меди. Чтобы установить точную связь их со статусом меди, требуются дальнейшие исследования.
    Дефицит меди наблюдался у пациентов, находящихся длительно на полном парентеральном питании. Заболевания, протекающие с мальабсорбцией (целиакия и нетропическая спру), или фистула приводят к потере меди и увеличивают риск истощения ее запасов. Длительное использование антацидов и очень высоких доз цинка приводят к гипокупремии и симптомам дефицита меди.
    Токсичность меди
    Острое отравление медью наблюдалось при случайном потреблении детьми, попытках самоубийства, после наружного применения, при использовании питьевой водой из загрязненных источников или потреблении пищи или напитков, которые хранились в медных контейнерах. Симптомы – эпигастральная боль, тошнота, рвота и диарея. Тяжелые проявления включают: кому, олигурию, некроз печени, сосудистый коллапс и смерть.
    Хроническое отравление медью наблюдалось у рабочих виноградников, использующих медные соединения в качестве пестицидов.
    Болезнь Вильсона – Коновалова и некоторые другие заболевания, связанные с накоплением меди в печени и других тканях – это генетическая патология. Содержание меди в печени повышается при циррозе у детей в Индии, очень высок ее уровень при
    первичном билиарном циррозе и атрезии желчевыводящих путей. При этих состояниях в большей мере рекомендуется назначение хелатообразующих препаратов, чем ограничение меди в рационе.
    Оценка статуса меди
    Оценивается путем определения содержания меди сыворотки крови и церулоплазмина.
    Уровни меди и церулоплазмина в сыворотке повышаются в течение беременности обычно в
    2 раза при воспалительных состояниях, инфекционных заболеваниях, гематологических болезнях, диабете, коронарных и сердечно-сосудистых расстройствах, уремии и злокачественных заболеваниях. Курение и некоторые лекарства также увеличивают концентрацию меди в сыворотке. Церулоплазмин – реагент острой фазы и его повышение,
    вероятно, ответственно за увеличение меди в сыворотке при вышеупомянутых условиях.
    Потребности в меди и ее пищевые источники
    Суточная потребность. По рекомендации ВОЗ ежедневная норма меди для взрослых составляет 1,5 мг. Пациенты, получающие ПП, нуждаются приблизительно в 0,3 мг меди ежедневно. Потребность увеличивается до 0,4–0,5 мг при выраженных желудочно-кишечных потерях. Потребление должно быть уменьшено у пациентов с холестазом и нарушением экскреции желчи.
    Пищевые источники. Рационы, в которых больше представлены продукты из цельного зерна, бобов и мяса, содержат большее количество меди. Богатые источники содержат 0,3–
    2 мг/100 г продукта. Это: морепродукты, орехи, семена (включая порошок какао), бобы,
    отруби, зародышевые части зерен, печень и мясо. Большинство злаковых продуктов,
    продуктов, содержащих шоколад, а также фрукты и овощи (помидоры, бананы, виноград,
    картофель, сухофрукты), грибы и большинство сортов мяса имеют промежуточные количества меди, 0,1–0,3 мг/100 г. Другие фрукты и овощи, мясо птицы, большинство видов рыб и молочные продукты содержат относительно низкие концентрации (менее 0,1 г мг/100 г) меди.
    Питательные вещества (железо, цинк, аскорбиновая кислота и углеводы) влияют на биодоступность меди, если они включаются в диету в больших количествах. В большей или меньшей степени уровень содержания меди в рационе может, в свою очередь, влиять на метаболизм некоторых из этих питательных веществ.
    Дефицит меди изменяет метаболизм железа, а чрезмерное количество железа в форме неорганических солей приводит к симптомам дефицита меди. Истощение запасов меди наблюдалось у людей, длительно принимавших большое количество цинка. Ежедневное добавление 1500 мг аскорбиновой кислоты приводило к снижению церулоплазмина.
    Абсорбции меди не мешает 600 мг аскорбиновой кислоты, но при этом наблюдается снижение церулоплазмина и предположительно может нарушаться его оксидазная активность. В эксперименте тип углеводов в рационе влияет на степень и тяжесть дефицита меди. Особенно неблагоприятны эффекты сахарозы и фруктозы.
    Селен
    Селен имеет множество биологических эффектов, но из-за его взаимосвязи с витамином
    Е более известен как антиоксидант.
    Благодаря своей роли в
    глутатионпероксидазе, селен взаимодействует с любым компонентом пищи, который затрагивает антиоксидантно-прооксидантный баланс клетки. Селен также защищает от токсичности ртути, кадмия и серебра.
    Метаболизм селена

    Селен поступает в пищу из растений. Преобладающая форма селена в тканях животных
    – цистеин селена. Многие белки содержат его в виде метионина селена.
    Все формы селена хорошо абсорбируются. Мало изучен его транспорт. Экскреция с мочой – это основной путь регуляции гомеостаза селена в организме.
    Дефицит селена
    Результат дефицита селена – повышение активности глутатион-S-трансферазы печени,
    почек и легких. Наблюдаются изменения в метаболизме гормона щитовидной железы.
    Сочетание дефицита селена и витамина Е служит в эксперименте причиной некроза печени и экссудативного диатеза. Рацион, редуцированный по селену и витамину Е, приводил к потере волос, задержке роста и неспособности к репродукции у животных.
    В 1979 г. китайские ученые впервые описали взаимосвязь селена и болезни Keshan,
    эндемичной кардиомиопатии у детей и молодых женщин. Болезнь связана с низким диетическим потреблением селена и низким уровнем селена в крови и в волосах, а также пограничный к дефицитному статус витамина Е. У некоторых субъектов, находящихся на полном парентеральном питании, был дефицит селена (если элемент не содержался в растворах) и развилась подобная кардиомиопатия. Специальные медицинские диеты,
    назначаемые при определенных состояниях, например, фенилкетонурии, также часто недостаточны по содержанию селена и могут приводить к его дефициту.
    Токсичность селена
    Известно об отравлении селеном людей, которые использовали пищевую добавку, в которой из-за производственной ошибки превышалось содержание селена в 182 раза.
    Признаки отравления включали тошноту, диарею, раздражительность, усталость,
    периферическую нейропатию, выпадение волос и изменения ногтей.
    Потребности в селене и его пищевые источники
    Суточная потребность. Адекватная потребность для взрослых составляет 70 мкг при диетическом питании.
    Пищевые источники селена. Самые богатые источники – мясо внутренних органов и продукты моря, далее следуют – мышечное мясо, хлебные злаки и зерно, молочные продукты, фрукты и овощи. Большие различия в содержании селена в хлебных злаках и зерне объясняются различиями количества селена в почве, доступного для захвата растениями.
    Очень высокое потребление (до 6690 мкг в день) наблюдалось в регионе Китая с местным селенозом. Продукты питания в этой области были выращены на почве, загрязненной селеном, выщелоченным из высокоселенсодержащего угля.
    Йод
    Йод – незаменимиая составная часть гормонов щитовидной железы – тироксина,
    тетрайодтиронина и трийодтиронина. Роль йода в пище соответствует значению гормонов щитовидной железы для роста и развития.
    Экология дефицита йода
    Существует цикл йода в природе. Большая его часть содержится в океане. Значительное количество йода было выщелочено из поверхностной почвы замораживанием, снегом или дождем и унесено ветром, реками и наводнениями в море. Дефицит йода существует на всех возвышенностях, подверженных замораживанию, сильным ливням и последующим горным потокам воды в реки. Также он наблюдается в затопляемых речных долинах. Все зерновые культуры, выращенные на этих почвах, имеют дефицит йода. Содержание его в растениях,
    выросших на таких почвах, может составлять лишь 10 мкг/кг (в растениях выросших на почве
    с достаточным содержанием иода – 1 мг/кг). Это объясняет возникновение тяжелого дефицита йода в затопляемых речных долинах Азии (Индия, Бангладеш, Бирма). По оценкам исследователей в развивающихся странах 1 млрд людей находятся под угрозой развития заболеваний, связанных с дефицитом йода. Большинство этих людей живут в областях, где зобом страдают более 10 % населения. Из них 220 млн страдают от зоба, 5 млн – от задержки умственного развития, представляющего выраженный кретинизм и 15–25 млн– от меньших умственных нарушений.
    Метаболизм йода
    Здоровый организм взрослого человека содержит 15–20 мг йода, приблизительно 70–
    80 % которого находится в щитовидной железе. Количество йода в железе зависит от его потребления. Йодид быстро абсорбируется в кишке. Нормальное потребление и потребность
    -50-100 мкг/сут. Избыток йода выделяется почками. Уровень экскреции хорошо коррелирует с уровнем потребления, поэтому он используется для оценки потребления йода.
    Регулирование уровня гормонов щитовидной железы сложное, с вовлечением в процесс не только щитовидной железы, но и гипофиза, мозга и периферических тканей.
    Заболевания, связанные с дефицитом йода
    Эффекты дефицита йода на рост и развитие в настоящее время называются заболеваниями, связанными с дефицитом йода.
    Дефицит йода у эмбриона – результат дефицита его у матери. Наблюдаемые при этом более частые мертворождения, аборты и врожденные уродства можно предупредить своевременной иодизацией матери. Дефицит йода у детей связан с развитием зоба. Степень зоба увеличивается с возрастом и достигает максимума в юности. Девочки имеют более высокую его распространенность, чем мальчики. Степень зоба у 8-14-летних школьников –
    соответствует дефициту йода в обществе. Результаты исследований указывают на существенную роль дефицита йода в интеллектуальном развитии школьников. В регионах с низким содержанием йода, эндемичных районах не только у населения, но даже у домашних животных распространена апатия.
    Исследования в Японии продемонстрировали следующее:
    – функция щитовидной железы у здоровых людей остается нормальной даже при употреблении нескольких миллиграммов диетического йода в день;
    – выраженность болезни Грэйвса и зоба Хашимото не подвергается воздействию высоких диетических доз йода;
    – повышенное потребление йода может стимулировать гипотиреоз при аутоиммунных заболеваниях щитовидной железы и может ингибировать эффекты тиреоидных лекарств!
    Оценка статуса йода
    Оценка статуса йода важна для назначения его добавки. Для оценки населения или группы людей, живущих в регионе, подозрительном на наличие дефицита йода,
    рекомендуются следующие методы:
    – оценка степени зоба, включая степень пальпируемого или видимого зоба,
    классифицируемого согласно принятым критериям. Достаточно проверить отдельных представителей населения на наличие зоба. В зобе взрослых представлен прошлый дефицит йода. УЗИ щитовидной железы дает при этом более объективные ее размеры, чем пальпаторное исследование;
    – определение экскреции йода с мочой. Используется суточный сбор мочи у случайных представителей – группы, состоящей приблизительно из 40 субъектов;

    – определение уровня тироксина сыворотки (Т4) или тиреотропина (ТТГ) косвенно свидетельствует о статусе йода. Особое внимание надо уделять уровню ТТГ у новорожденных и беременных женщин.
    Последние два метода используются для оценки эффективности применяемых мер профилактики дефицита йода.
    Токсичность йода
    Предложено расценивать ежедневное потребление человеком 2000 мкг йода как чрезмерное или потенциально вредное. Обычные рационы, составленные из естественных пищевых продуктов, содержат меньше 1000 мкг йода, исключая те рационы, в которых исключительно высокое содержание морской рыбы или морских водорослей или в которых пищевые продукты загрязнены йодом из случайных источников.
    Обусловленный йодом гипертиреоз. Ежедневное потребление йода менее 0,1 мг не приводит к какому-либо риску для пациентов с аутоиммунным тиреоидитом. Ежедневное потребление более 0,1 мг является критическим. Вообще йодирования необходимо избегать лицам старше 40 лет из-за риска гипертиреоза. В щитовидной железе может продолжаться процесс секреции гормонов, несмотря на увеличение потребления йода и независимо от контроля тиреотропного гормона (тиреотропина).
    Потребности в йоде и его пищевые источники
    Суточная потребность. Норма ежедневного потребления йода 120–150 мкг с 11 лет и старше. При беременности и кормлении грудью, соответственно, 175 и 200 мкг.
    Пищевые источники. Как отмечалось выше, содержание иода в сельскохозяйственных продуктах зависит от геохимических характеристик местности. Богаты иодом продукты моря: морская рыба, моллюски и водоросли (ламинария).
    Коррекция дефицита йода. Иодирование соли – метод, используемый для исправления дефицита йода, начиная с 20-х годов прошлого века, когда оно впервые успешно было использовано в Швейцарии. Соль должна добавляться в готовую пищу, чтобы снизить потерю йода в процессе приготовления. В некоторых странах используется йодированное масло грецкого ореха и сои.
    Хром
    Хром – незаменимый нутриент, который оказывает потенциальное действие на инсулин и, таким образом, влияет на метаболизм углеводов, липидов и белка. Однако до сих пор не идентифицирован химический характер взаимосвязи между хромом и функцией инсулина.
    Биологически активная форма хрома, иногда называемого фактором толерантности глюкозы, может быть комплексом хрома, никотиновой кислоты и, возможно, аминокислот глицина, цистеина и глютаминовой кислоты. Предполагается, что хром обладает биохимической функцией, которая оказывает влияние на способность рецептора инсулина к взаимодействию с гормоном.
    Метаболизм
    Всасывание неорганического трехвалентного хрома низкое.
    Многочисленные диетические факторы влияют на его биодоступность. Так, абсорбция хрома возрастает при наличии оксалатов и снижается при дефиците железа. На всасывание оказывают влияние также физиологические факторы, например, старение.
    В транспорте хрома главную роль играют трансферрин и альбумин. Хром равномерно распределен по всему организму в небольших концентрациях.
    Абсорбированный неорганический трехвалентный хром выделяется в основном
    почками, в небольших количествах – с выпадающими волосами, потом и желчью. Большое количества хрома может быть потеряно с желчью.
    Дефицит хрома
    Признаки дефицита хрома – нарушение толерантности глюкозы, гипергликемия с глюкозурией и невосприимчивость к инсулину. Нутритивный хром имеет практический интерес в развитых странах, где используется много рафинированных пищевых продуктов,
    т. к. заметные его потери происходят при их очистке. Кроме того, неадекватное потребление хрома имеет значение у людей, подвергаемых стрессу, травме и инфекции, у которых увеличивается потребность в нем, а также потребляющих рационы с высоким содержанием простых углеводов.
    Токсичность хрома имеет такой низкий порядок, что отрицательные эффекты от чрезмерного потребления трехвалентного хрома не наблюдаются. Лишь в чрезвычайно высоких количествах он проявляет свое действие, но больше как желудочный раздражитель,
    нежели ядовитый элемент.
    Потребности в хроме и его пищевые источники
    Суточная потребность. Рекомендуемая потребность для взрослых 50-200 мкг в сутки.
    Для многих людей может быть адекватно ежедневное потребление 25–35 мкг хрома. Но оно неадекватно в ситуациях стресса, повышенного потребления простых углеводов,
    напряженной физичесой работы, инфекции и травмы.
    Пищевые источники хрома. Обработанное мясо, продукты из цельного зерна, включая отруби из хлебных злаков и специи – лучшие источники хрома. Молочные продукты, фрукты и овощи содержат малые его количества.

    Микроэлементы
    Микроэлементы – это те минералы, оцениваемая диетическая потребность которых обычно менее чем 1 мкг/г и часто менее чем 50 нг/г рациона для лабораторных животных.
    Отметим, что обычно лишь предполагается, что они являются незаменимыми для людей, но нутриционная их важность точно не установлена. Причиной этого является то, что они требуются в небольших количествах, то есть менее 1 мг/сут.
    К микроэлементам относятся: мышьяк, бор, бром, кадмий, фтор, свинец, литий,
    марганец, молибден, никель, кремний, олово и ванадий.
    Начиная с 1970-х годов было много спекулятивных заявлений относительно того, что недостаток одного или большего количества микроэлементов вносит значительный вклад в возникновение ряда заболеваний. Однако большинство исследователей считают, что недостаточное потребление определенного микроэлемента является значимым только тогда,
    когда организм подвергается стрессу, который увеличивает потребность в микроэлементе.
    Мышьяк
    Метаболическая функция достаточно ясно не определена. Предполагают, что мышьяк выполняет биохимическую роль или роли, которые затрагивают формирование различных метаболитов из метионина (например, цистеина и таурина) и аргинина (например,
    путресцина).
    Возможно, мышьяк играет роль в некоторых ферментативных реакциях. Как активатор фермента мышьяк, вероятно, действует как заместитель фосфата. Как ингибитор, мышьяк,
    очевидно, реагирует с сульфгидрильными группами ферментов.
    Метаболизм. Более 90 % неорганических соединений мышьяка растворимы и хорошо абсорбируются. Далее неорганический мышьяк перемещается в печень, где он метилируется.
    Никакая ткань не имеет существенного накопления мышьяка. Самые высокие концентрации мышьяка находят в коже, выпавших волосах и ногтях, вероятно в результате связи арсенита с
    SH-группами белков, которых относительно больше в этих тканях.
    Экскреция мышьяка происходит быстро, преимущественно с мочой. Незначительные количества удаляются с потом, с выпавшими волосами, отшелушивающейся кожей и желчью.
    Признаки дефицита мышьяка — сниженный рост и ненормальное воспроизводство,
    характеризующееся повышением фертильности и перинатальной смертности. Другие известные симптомы: сниженная концентрация триглицеридов сыворотки и смерть в процессе кормления грудью.
    Хотя известны биохимические и физиологические функции мышьяка, в настоящее время не удается связать расстройства этих функций с нутритивным дефицитом мышьяка.
    Токсичность мышьяка – при пероральном потреблении относительно низка; он фактически менее ядовит, чем селен. Ядовитые количества неорганического мышьяка вообще составляют миллиграммы. Отношение яда к нутриционной дозе для крыс – около
    1250. Некоторые формы органического мышьяка фактически неядовиты.
    Симптомы подострого и хронического отравления мышьяком у людей включают:
    развитие различных типов дерматита; депрессию гемопоэза; повреждение печени,
    характеризующееся желтухой, портальным циррозом печени и асцитом; сенсорные нарушения; периферический неврит; анорексию и потерю массы тела.

    Суточная потребность. Основанная на вычислениях, возможная потребность мышьяка для людей с рационом 2000 ккал составила бы приблизительно 12–15 мкг ежедневно.
    Пищевые
    источники. Рыба, зерно и продукты хлебных злаков обеспечивают достаточное содержание мышьяка в рационе.
    Бор
    Биологический интерес представляют комплексы бора со многими веществами,
    включая сахар и полисахариды, аденозин-5-фосфат, пиридоксин, рибофлавин,
    дегидроаскорбиновая кислота и пиридин нуклеотиды. Бор влияет на макроминеральный метаболизм, влияет на метаболизм стероидных гормонов и у людей и у животных.
    Отсутствие бора вызывает увеличение появления стрессовых нутриционных факторов,
    которые влияют на функцию мембраны клетки (то есть, кальция, холекальцифрола, магния или снижение калия). Таким образом, бор может выполнять функцию на уровне мембраны клетки.
    Метаболизм. Бор пищи в виде декагидрата тетрабората натрия и борной кислоты –
    быстро абсорбируются и выделяются в значительной степени с мочой. Более чем 90 %
    потребляемого бора обычно абсорбируются. Бор распределен во всех тканях. Самая высокая концентрация бора в кости, селезенке и щитовидная железа.
    Признаки дефицита. Очевидно, что бор биологически динамичный микроэлемент,
    который затрагивает макроминеральный метаболизм. Исключение из рациона бора может играть роль при некоторых расстройствах неизвестной причины, которые проявляются нарушенным макроминеральным метаболизмом (например, остеопорозом, уролитиазом и неправильным формированием кости, связанных с длительным ПП).
    Точно верифицировать симптомы дефицита бора сложно, так как отсутствие бора затрагивает макроминеральный метаболизм. Известно, что бор воздействует на обмен кальция и меди. Его дефицит может приводить к гиперхромной анемии и тромбоцитопении.
    Бор может потенцировать эффекты принимаемых эстрогенов у постклимактерических женщин. Диетический бор не затрагивает эти переменные у мужчин и женщин, не получающих эстрогены. Показано, что низкие диетические концентрации бора приводят к снижению умственной способности
    Токсичность. Бор имеет низкую токсичность.
    Перенасыщение бором приводит к выпадению волос, полиморфной сухой эритеме и анемии, которые проходят при нормализации уровня бора в диете. Признаки острой интоксикации включают: тошноту, рвоту, диарею, дерматит и летаргию. Кроме того,
    высокий прием бора с пищей стимулирует рибофлавинурию.
    Суточная потребность составляет более 0,3 мг, вероятно ближе к 1 мг.
    Пищевые источники. Ежедневное потребление бора людьми может изменяться в широких пределах в зависимости от количества различных групп пищи в рационе. Пищевые продукты растительного происхождения, особенно фрукты нецитрусовых, покрытые листвой овощи, орехи и бобы – богатые источники бора. Вино, сидр и пиво также имеют значительное содержание бора. Мясо, рыба и молочные продукты бедны бором.
    Марганец
    Известные биохимические функции марганца – это активация ферментов и некоторых металлоэнзимов.
    Метаболизм. Абсорбция марганца из рациона предположительно равна 5 %.
    Всасывание марганца происходит по всей тонкой кишке. При абсорбции марганец
    конкурирует с железом и кобальтом. Таким образом, один из металлов, если уровень его высок, может проявлять ингибирующий эффект на всасывание других. В клетках марганец преимущественно находится в митохондриях, в таких органах как печень, почки и поджелудочная железа. Марганец почти полностью выделяется с калом.
    Признаки дефицита у лабораторных животных включают: замедление роста, нарушения скелета, угнетение репродуктивной функции, атаксию у новорожденных и дефекты метаболизма углеводов и липидов.
    Описан пока единственный достоверный случай дефицита марганца человека, который после употребления молочной смеси в течение длительного периода соблюдал диету. У него отмечались: потеря массы тела, замедление роста волос и ногтей, дерматит и гипохолестеринемия. Кроме того, его черные волосы приобрели красноватый оттенок и нарушился коагуляционный ответ белка на витамин К.
    У пациентов с определенными типами эпилепсии отмечается снижение концентрации марганца в цельной крови. Наконец, низкие концентрации марганца сыворотки, обычно в сочетании с низкими концентрациями меди и цинка, были найдены у пациентов при нарушенном метаболизме кости, что исправлялось введением в рацион марганца, меди и цинка.
    Возможно люди, подверженные стрессорному воздействию, имеют повышенную потребность в одном из марганцевых ферментов, что может привести к большей восприимчивости к дефициту марганца. Риск появления дефицита марганца увеличивается у людей, злоупотребляющих алкоголем.
    Токсичность. При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главные признаки интоксикации марганца у животных – угнетение роста,
    сниженный аппетит, нарушение метаболизма железа и изменение функции мозга.
    Сообщений о случаях интоксикации у людей, вызванной пероральным приемом пищи с высоким содержанием, нет. Интоксикация у людей наблюдается в результате хронической ингаляции больших количеств марганца на производстве. Возникают тяжелые нарушения психики, включая гиперраздражительность, гипермоторику и галлюцинации – «марганцевое безумие».
    При прогрессировании интоксикации развиваются изменения в
    экстрапирамидной системе, подобные болезни Паркинсона.
    Суточная потребность в марганце для взрослых 2–5 мг.
    Пищевые источники. Неочищенные хлебные злаки, орехи, покрытые листвой овощи и чай богаты марганцем, тогда как очищенное зерно, мясо и ежедневно потребляемые продукты содержат лишь небольшие его количества. Таким образом рационы, богатые пищевыми продуктами растительного происхождения, поставляют ежедневно в среднем
    8,3 мг марганца, при том, что рационы в больницах поставляют менее 0,36-1,78 мг марганца в день.
    Молибден
    Молибденоэнзимы катализируют гидроксилирование различных субстратов.
    Альдегидоксидаза окисляет и нейтролизует различные пиримидины, пурины, птеридины.
    Ксантиноксидаза катализирует преобразование гипоксантинов в ксантины, а ксантины – в мочевую кислоту. Сульфитоксидаза катализирует преобразование сульфита в сульфат.
    Метаболизм. Молибден из пищевых продуктов и в форме растворимых комплексов легко абсорбируется. У людей всасывается 25–80 % поступающего с пищей молибдена.
    Абсорбция происходит в желудке и по всей тонкой кишке, в большей степени в ее
    проксимальном отделе, чем в дистальном. На всасывание молибдена значительно влияют взаимодействия между молибденом и различными диетическими формами серы. Органы,
    которые содержат самые высокие количества молибдена – это печень и почки.
    Большая часть молибдена быстро поступает в почки и экскретируется ими. Экскреция является главным механизмом его гомеостатического регулирования. Существенные количества этого элемента экскретируются с желчью.
    Признаки дефицита. Дефицит молибдена возможен у людей, которые получают полное парентеральное питание (ПП) или подвержены стрессу (увеличена потребность в сульфитоксидазе).
    Признание роли молибдена как компонента сульфитоксидазы и данные о том, что дефицит сульфитоксидазы нарушает метаболизм цистеина, были подтверждены случаем нарушения, вызванного недостатком функционирующего молибдена у человека. Существует врожденный дефект в метаболизме цистеина (дефицит сульфитоксидазы), приводящий к коме и летальному исходу. Аномалия характеризуется серьезным повреждением мозга,
    умственной отсталостью, вывихом хрусталика, увеличенной мочевой экскрецией сульфита,
    уменьшенной мочевой экскрецией сульфата.
    У пациентов, получающих длительно полное ПП, описан синдром «приобретенного дефицита молибдена»: гиперметионинемия, гипоурикемия, гипероксипуринемия,
    гипоурикозурия и гипосульфатурия, прогрессирующие умственные расстройства (до комы).
    Токсичность. Молибден – относительно неядовитый элемент. Необходимы его большие пероральные дозы, чтобы преодолеть гомеостатический контроль. Большинство признаков интоксикации молибденом аналогичны или идентичны таковым при дефиците меди
    (замедление роста и анемия).
    Профессиональные интоксикации, выявленные эпидемиологическими методами, характеризовались повышением концентрации мочевой кислоты в крови и учащении случаев подагры.
    Суточная потребность в молибдене у взрослых 75-250 мкг, у лиц старше 75 лет —
    200 мкг.
    Пищевые источники. Большинство обычных рационов поставляет приблизительно 50-
    100 мкг молибдена в день, то есть не обеспечивает минимальный уровень безопасного и адекватного его потребления. Самые богатые источники молибдена: молоко и молочные продукты, высушенные бобы, мясо внутренних органов (печень и почки), хлебные злаки и выпечка. Бедны молибденом овощи, фрукты, сахар, масла, жиры и рыба.
    Никель
    Поскольку никель эссенциален для некоторых животных, предполагается, что никель также необходим человеку. Связь дивалентного никеля с различными лигандами, включая аминокислоты и белки, вероятно, важна при внеклеточном транспорте, внутриклеточной связи и мочевой и желчной экскреции никеля. Предполагается, что никель участвует как структурный компонент в некоторых ферментах.
    Метаболизм. Поступающий внутрь с водой никель абсорбируется на 20–25 %.
    Определенные пищевые продукты снижать его абсорбцию: молоко, кофе, чай, апельсиновый сок и аскорбиновая кислота. Таким образом, никель плохо абсорбируется (менее чем 10 %),
    если потребляется с типичными рационами. Всасывание никеля увеличивается при железодефиците, беременности и кормлении грудью.
    Никель транспортируется преимущественно с альбумином сыворотки. Никакая ткань или орган значимо не накапливают никель при поступлении его в физиологических дозах. Щитовидная железа и
    надпочечники имеют относительно высокие его концентрации.
    Выделяется преимущественно с калом, мочой, потом и желчью.
    Признаки дефицита. До сих пор более известно о физиологической функции и потребности никеля, чем о специфических расстройствах, вызываемых им, исключая дерматит, который полностью или частично относится к дефициту никеля.
    Токсичность. Угроза интоксикации никелем при пероральном его потреблении маловероятна. Из-за превосходного гомеостатического регулирования соли никеля проявляют свое ядовитое действие главным образом в виде раздражения желудочно- кишечного тракта.
    Суточная
    потребность. Адекватное ежедневное потребление никеля должно составлять 100–300 мкг.
    Пищевые источники : шоколад, орехи, высушенные бобы, горох и зерно. Обычные рационы обеспечивают менее 150 мкг ежедневно.
    Кремний
    Предполагается, что кремний функционирует как биологический структурообразующий фактор соединений, которые вносят вклад в архитектуру и упругость соединительной ткани.
    Соединительные компоненты ткани, в которых кремний, вероятно, играет фундаментальную роль – это коллаген, эластин и мукополисахариды.
    Метаболизм
    кремния. Немного известно о метаболизме кремния. Увеличение потребления кремния повышает экскрецию у людей с мочой до довольно четких пределов.
    Признаки дефицита. Большинство симптомов кремниевого дефицита у лабораторных животных указывает на ненормальный метаболизм соединительной ткани и кости.
    Признаки дефицита более выражены при низком диетическом потреблении кальция и высоком уровне пищевого алюминия. Кремниевые добавки предотвращают увеличение концентрации алюминия в мозге. Считается, что серьезный недостаток диетического кремния у человека может иметь вредные эффекты на мозг и функцию костей и суставов.
    Токсичность кремния. Кремний – по существу не яд в случае перорального приема. Так,
    антацид магний трисиликат использовался в течение десятков лет без вредных эффектов.
    Суточная потребность в кремнии находится в диапазоне от 5 до 20 мг.
    Пищевые
    источники. Потребление кремния очень изменяется в зависимости от количества и доли в рационе продуктов животного (кремний-низких) и растительного
    (кремний-высоких) происхождения и от количества очищенных и обработанных пищевых продуктов в рационе. Самые богатые источники кремния – неочищенное зерно с высоким содержанием волокон, продукты из хлебных злаков и корнеплоды овощей. Обычная диета поставляет 21–46 мг кремния в день.
    Ванадий
    В биологических системах наиболее важными формами ванадия являются тетра– и пентавалентные состояния, которые легко образуют комплексы с другими веществами,
    такими как трансферрин или гемоглобин, таким образом стабилизируя их против окисления. Предполагают, что ванадий играет роль в ферментах фосфорилтрансферазе,
    аденилатциклазе и протеинкиназе; как кофактор фермента в форме ванадила – в гормонах,
    глюкозе, липидах, кости и метаболизме зуба. Наиболее изученная галопероксидаза –
    пероксидаза щитовидной железы.
    Метаболизм. Абсорбируется менее чем 5 % поступившего перорально ванадия (как ванадил или ванадат). Множество веществ может повышать степень токсичности ванадия,
    влияя на его абсорбцию, включая аскорбиновую кислоту, хром, белок, железистое железо,
    хлорид и гидроксид алюминия. При поступлении в кровь ванадий, очевидно, конвертируется в ванадил-трансферрин и ванадил-ферритиновые комплексы в жидкостях организма и плазме. Моча представляется главным средством экскреции для абсорбированного ванадия,
    а кость – главное место депо.
    Признаки дефицита. Большинство сообщаемых признаков являются сомнительными.
    Рационы, используемые в исследованиях с отсутствием ванадия, имели изменяющееся содержание белка, аминокислот, аскорбиновой кислоты, железа, меди и возможно других нутриентов, которые могут воздействовать на ванадий. Дефицит ванадия у животных приводил к повышению частоты абортов и снижению количества молока, приблизительно
    40 % детенышей погибали, увеличивался вес щитовидной железы, уменьшался рост.
    Дефицит ванадия не идентифицирован у людей.
    Клиническая важность ванадия сомнительна. Поскольку ванадий может затрагивать метаболизм йода и функцию щитовидной железы, предполагают, что он может обладать нутриционной значимостью при стрессе, который вызывает резкое снижение нормального статуса щитовидной железы.
    Токсич ность. Ванадий может быть ядовитым элементом. Изучения острой интоксикации указывают, что это нейротоксичный и геморрагически-эндотелиотоксичный яд, с нефро– и гепатотоксичным компонентами. Показано, что длительное ежедневное употребление более 10 мг ванадия может привести к токсикологическим последствиям.
    Суточная
    потребность. Ежедневное диетическое потребление 10 мкг ванадия,
    вероятно, соответствует потребности в нем.
    Пищевые источники. Рационы обычно поставляют 6-10 мкг ванадия в день. Пищевые продукты, богатые ванадием: моллюск, грибы, петрушка, семя укропа, черный перец.
    Напитки, жиры и масла, свежие фрукты и свежие овощи содержат наименьшее количество ванадия.
    Другие микроэлементы
    Результаты исследований позволяют предполагать, что бром, фтор, свинец и олово являются эссенциальными микроэлементами.
    Бром. Сообщается, что рацион коз, содержащий менее 1 мг брома на 1 кг пищи,
    приводит к снижению роста, уровня гемоглобина и продолжительности жизни.
    Фтор. Всеми признано, что фторид имеет некоторые полезные фармакологические свойства, которые помогают предотвращать зубной кариес и возможно защищает против переломов костей, связанных с остеопорозом. Безопасное и адекватное потребление фтора у взрослых – от 1,5 до 4 мг.
    Сви н е ц . Дефицит в эксперименте понижает рост, нарушает метаболизм железа,
    изменяет действия некоторых ферментов и концентрацию отдельных метаболитов в печени,
    связанных со статусом железа. Было обнаружено, что свинец увеличивает рост и улучшает гематокрит и концентрацию гемоглобина при дефиците железа у крыс, однако этот эффект был, вероятно, результатом фармакологического действия свинца. Механизм, с помощью которого свинец влияет на метаболизм железа, пока не определен.
    Олово. Рацион с дефицитом олова у лабораторных животных вызывает недостаток роста, алопецию и изменение концентрации минералов в различных органах. Эти данные о роли дефицита олова нуждаются в подтверждении.

    1   ...   11   12   13   14   15   16   17   18   ...   62


    написать администратору сайта