4 Ответы по устройству. Понятия автомобиль, двигатель, верхняя и нижняя мертвые точки, объем камеры сгорания, полный и рабочий объем цилиндра, степень сжатия, рабочие циклы, такт, четырехтактный двигатель, рабочие циклы четырехтактных карбюраторных и дизельных двигателей
Скачать 1.1 Mb.
|
46. Назначение, классификация, устройство и принцип работы рулевых усилителей. Рулевым усилителем называется механизм, создающий под давлением жидкости или сжатого воздуха дополнительное усилие на рулевой привод, необходимое для поворота управляемых колес автомобиля. Усилитель служит для облегчения управления автомобилем, повышения его маневренности и безопасности движения. Он также смягчает толчки и удары дорожных неровностей, передаваемых от управляемых колес на рулевое колесо. Маневренность автомобиля с рулевым усилителем повышается вследствие быстроты и точности его действия. Безопасность движения повышается потому, что в случае резкого понижения давления воздуха в шине переднего управляемого колеса при проколе или разрыве шины при наличии усилителя водитель в состоянии удержать рулевое колесо в руках и сохранить направление движения автомобиля. Однако наличие усилителя приводит к усложнению конструкции рулевого управления и повышению стоимости, к увеличению изнашивания шин, более сильному нагружению деталей рулевого привода и ухудшению стабилизации управляемых колес автомобиля. Кроме того, наличие усилителя на автомобиле требует адаптации водителя. Рулевые усилители применяют на легковых автомобилях, грузовых автомобилях средней и большой грузоподъемности и автобусах. Получили распространение гидравлические и пневматические усилители. Принцип действия этих усилителей аналогичен, но в них используется различное рабочее вещество: в гидравлических усилителях — масло (турбинное, веретенное), а в пневматических — сжатый воздух пневматической тормозной системы автомобиля. Гидравлические усилителиполучили наибольшее применение. Так, из всех автомобилей с усилителями 90 % оборудованы гидравлическими усилителями. Пневматические усилителив настоящее время имеют ограниченное распространение. Их применяют в основном на грузовых автомобилях большой грузоподъемности с пневматической тормозной системой. Пневматический усилитель включается в работу водителем только в тяжелых дорожных условиях. Конструкция пневматических усилителей проще, чем гидравлических, так как используется оборудование тормозной пневматической системы автомобиля. Но они имеют большие габаритные размеры, обусловленные невысоким рабочим давлением, и значительное время срабатывания, что приводит к меньшей точности при управлении автомобилем в процессе поворота. К рулевым усилителям предъявляют требования, в соответствии с которыми они должны обеспечивать: • кинематическое следящее действие (по перемещению), т.е. соответствие между углами поворота рулевого колеса и управляемых колес; • силовое следящее действие (по силе сопротивления повороту), т.е. пропорциональность между усилием на рулевом колесе и силами сопротивления повороту управляемых колес; .• возможность управлять автомобилем при выходе усилителя из строя; • действие только в случаях, когда усилие на рулевом колесе превышает 25... 100 Н; • минимальное время срабатывания; • минимальное влияние на стабилизацию управляемых колес автомобиля; • смягчение и поглощение толчков и ударов, передаваемых от управляемых колес на рулевое колесо. Гидроусилитель имеет следующие основные элементы: гидронасос с бачком, гидрораспределитель и гидроцилиндр. Гидронасос является источником питания, гидрораспределитель — распределительным устройством, а гидроцилиндр — исполнительным устройством. Гидронасос, приводимый в действие от двигателя автомобиля, соединен нагнетательным и сливныммаслопроводами с гидрораспределителем, который установлен на продольной рулевой тяге, прикрепленной к поворотному рычагу управляемого колеса. Внутри корпуса гидрораспределителя находится золотник, связанный с рулевым механизмом . Золотник имеет три пояска, а корпус гидроусилителя — три окна. Внутри корпуса между поясками золотника образуются две камеры. Кроме того, в корпусе имеются еще две реактивные камеры, соединенные с камерами золотникаосевыми каналами, выполненными в крайних поясках золотника. В реактивных камерах размещены предварительно сжатые центрирующие пружины. Гидрораспределитель соединен маслопроводамис гидроцилиндром, который установлен на несущей системе (раме, кузове) автомобиля. Поршеньгидроцилиндра через шток связан с поперечной рулевой тягой, соединенной с рычагомповоротной цапфы управляемого колеса.Поршень делит внутренний объем гидроцилиндра на две полости, которые соединены маслопроводами соответственно с камерами золотникагидрораспределителя. Обе полости гидроцилиндра, все камеры гидрораспределителя и маслопроводы заполнены маслом (турбинное, веретенное).Работает гидроусилитель следующим образом.При прямолинейном движении автомобиля золотникпод действием центрирующих пружини давления масла в реактивных камерах удерживается в нейтральном положении, при котором все три окна гидрораспределителя открыты. Масло поступает от гидронасоса через нагнетательный маслопровод в камеры золотника гидрораспределителя, из них по сливному маслопроводу в бачок, а из него в гидронасос.Давление масла, установившееся в камерах золотника,передается по маслопроводам в полости гидроцилидра. Давление в этих полостях одинаково.При повороте автомобиля усилие от рулевого механизма передается на золотник. После преодоления сопротивления центрирующих пружин усилие переместит золотник из нейтрального положения на 1 ...2 мм в одну или другую сторону в зависимости от направления поворота автомобиля. Нагнетательный маслопровод через гидрораспределитель соединяется с одной из полостей гидроцилиндра, а другая его полость соединяется со сливным маслопроводом. Масло из гидронасоса по нагнетательному маслопроводупоступает в гидрораспределитель, затем в гидроцилиндр и воздействует на поршень. Перемещающийся поршень через тягуирычагповернет управляемое колесо, а масло из гидроцилиндра по сливному маслопроводупоступит в бачокииз него в гидронасос.Одновременно из-за наличия обратной связи через рычаг и тягукорпус гидрораспределителя переместится в ту же сторону, в которую был смещен золотник. При этом давление масла в полостях гидроцилиндра уравновесится, и поворот управляемого колеса прекратится.Угол поворота управляемого колеса будет точно соответствовать углу поворота рулевого колеса — в этом заключается следящее действие гидроусилителя по перемещению.Следовательно, гидроусилитель следит за поворотом рулевого колеса. И если водитель останавливает рулевое колесо, то гидрораспределитель обеспечивает за счет обратной связи фиксацию поршня гидроцилиндра в соответствующем положении. При этом дополнительная подача масла в гидроцилиндр прекращается.С помощью обратной связи также происходит выключение гидроусилителя при возвращении рулевого колеса в нейтральное положение, соответствующее прямолинейному движению автомобиля.В рулевом управлении без гидроусилителя водитель чувствует дорогу по прилагаемому к рулевому колесу усилию, возрастающему при увеличении сопротивления повороту управляемых колес и наоборот.При гидроусилителе водитель чувствует дорогу за счет следящего действия гидроусилителя по силе — изменения прилагаемого усилия на рулевом колесе. Для этого предназначены реактивные камеры в гидрораспределителе, в каждой из которых давление масла такое же, как в камерах золотника. При увеличении сопротивления повороту управляемых колес автомобиля возрастает давление масла в одной из реактивных камер. Давление передается на золотник и от него через рулевой механизм на рулевое колесо. При этом усилие для поворота рулевого колеса увеличивается пропорционально сопротивлению поворота управляемых колес. Таким образом, гидроусилитель следит за необходимым для поворота управляемых колес усилием, чтобы водитель чувствовал дорогу, т. е. на хорошей дороге ему было бы легко поворачивать, а на трудной для поворота дороге — несколько тяжелее.Гидроусилители, применяемые на автомобилях, выполняются в основном по следующим трем вариантам: 1. Рулевой механизм, гидрораспределитель и гидроцилиндр находятся в агрегате, который называется гидрорулем. Конструкция гидроруля сложная, но компактная, имеет малые длину маслопроводов и время срабатывания. 2. Гидрораспределитель и гидроцилиндр расположены в одном агрегате и установлены отдельно от рулевого механизма. Вариант менее сложный, чем гидроруль, но имеет большие длину маслопроводов и время срабатывания. Зато обеспечивается возможность использования рулевого механизма любого типа. 3. Рулевой механизм, гидрораспределитель и гидроцилиндр размещены раздельно. При таком варианте обеспечивается свобод-ное расположение элементов гидроусилителя на автомобиле и применение рулевого механизма любого типа. Однако длина маслопроводов и время срабатывания большие. 47. Влияние состояния рулевого управления на износ шин и безопасность дорожного движения. Исправный гидроусилитель – увеличивает маневренность автомобиля, дает возможность при разрыве шин поддерживать заданную траекторию. Отрегулированная рулевая трапеция – обеспечивает управляемость автомобиля,снижает расход топлива и износ шин. Травмобезопасное рулевое управление – уменьшает тяжесть последствий ДТП. 48. Назначение, классификация и общее устройство тормозных систем. Тормозной называется система управления автомобилем, которая служит для уменьшения скорости движения, остановки и удержания автомобиля на месте. Тормозная система обеспечивает безопасность при движении и остановках. Современные автомобили оборудуются несколькими тормозными системами, имеющими различное назначение.
Рабочая тормозная система предназначена для снижения скорости движения автомобиля вплоть до полной его остановки. Она является наиболее эффективной из всех тормозных систем, действует на все колеса автомобиля и используется для служебного и экстренного (аварийного) торможения автомобиля. Рабочую тормозную систему часто называют ножной, так как она приводится в действие от тормозной педали ногой водителя. Стояночная тормозная система служит для удержания на месте неподвижного автомобиля. Она воздействует только на задние колеса автомобиля или на вал трансмиссии. Стояночную тормозную систему называют ручной, так как она приводится в действие от рычага рукой водителя. Запасная тормозная система является резервной, она предназначена для остановки автомобиля при выходе из строя рабочей тормозной системы. При отсутствии на автомобиле отдельной запасной тормозной системы ее функции может выполнять исправная часть рабочей тормозной системы (первичный или вторичный контур) или стояночная тормозная система. Вспомогательная тормозная система служит для ограничения скорости движения автомобиля на длинных и затяжных спусках. Она выполняется независимой от других тормозных систем и представляет собой тормоз-замедлитель, который обычно действует на вал трансмиссии. Вспомогательную тормозную систему используют для служебного торможения с целью уменьшения изнашивания рабочей тормозной системы и повышения безопасности движения в горных условиях, где при частых торможениях тормозные механизмы колес сильно нагреваются и быстро выходят из строя. Прицепная тормозная система предназначена для снижения скорости движения, остановки и удержания на месте прицепа, а также автоматической его остановки при отрыве от автомобиля-тягача. Рабочей, стояночной и запасной тормозными системами оборудуются все автомобили, а вспомогательной тормозной системой — только грузовые автомобили большой грузоподъемности полной массой свыше 12 т и автобусы полной массой более 5 т. Прицепной тормозной системой оборудуются прицепы, работающие в составе автопоездов. Совокупность всех тормозных систем называется тормозным управлением автомобиля. Каждая тормозная система состоит из одного или нескольких тормозных механизмов (тормозов) и тормозного привода. Тормозные механизмы осуществляют процесс торможения автомобиля, а тормозной привод управляет тормозными механизмами. Тормозные системы существенно влияют на безопасность движения автомобиля. Поэтому к тормозным системам, кроме общих требований к конструкции автомобиля, предъявляются повышенные специальные требования. В соответствии с этими требованиями тормозные системы должны обеспечивать: • минимальный тормозной путь или максимальное замедление при торможении; • сохранение устойчивости автомобиля при торможении; • стабильность тормозных свойств при неоднократных торможениях; • минимальное время срабатывания при торможении; • пропорциональность между усилием на тормозной педали и тормозными силами на колесах автомобиля (силовое следящее действие); • легкость управления. Требования к тормозным системам регламентируются Правилами № 13 ЕЭК ООН, применяемыми в России. 49. Назначение, классификация и устройство тормозных механизмов. Тормозными называются механизмы, осуществляющие процесс торможения автомобиля. Тормозные механизмы служат для принудительного замедления автомобиля. Современные автомобили оборудуются различными типами тормозных механизмов. Тормозные механизмы могут осуществлять принудительное замедление автомобиля различными способами.
Фрикционные тормозные механизмы (дисковые и барабанные) получили наиболее широкое распространение на автомобилях. Дисковые тормозные механизмы применяются для передних и задних колес легковых автомобилей большого класса и для передних колес легковых автомобилей малого и среднего классов. Барабанные тормозные механизмы используют на грузовых автомобилях, независимо от их грузоподъемности, в качестве колесных и трансмиссионных и на легковых автомобилях малого и среднего классов для задних колес. Фрикционный тормозной механизм включает в себя вращающуюся часть (барабан, диск), тормозной элемент (колодки), прижимное (кулачковое, поршневое), регулировочное (эксцентрики) и охлаждающее (ребра, каналы) устройства. В барабанном тормозном механизме тормозной барабансоединен с колесом автомобиля и вращается вместе с ним. Тормозные колодкис фрикционными накладками установлены нижними концами на оси, закрепленной на неподвижном тормозном диске. Колодки могут поворачиваться на оси. Между верхними концами колодок находится разжимной кулак. При торможении кулакразводит колодки, прижимая их к вращающемуся с колесом барабану. Торможение колеса происходит за счет сил трения, возникающих между фрикционными накладками колодок и тормозным барабаном. В дисковом тормозном механизме тормозной диск связан с колесом автомобиля и вращается вместе с ним. С обеих сторон тормозного диска установлены две невращающихся колодкис фрикционными накладками. При торможении колеса колодки прижимаются к диску, создавая тормозной момент, препятствующий вращению колеса. Дисковые тормозные механизмы по сравнению с барабанными имеют меньшую массу, более компактны, более стабильны и лучше охлаждаются. Однако они менее эффективны, имеют более быстрое изнашивание фрикционных накладок и хуже защищены от загрязнения. Гидравлические, электрические, компрессорные и аэродинамические тормозные механизмы используются на автомобилях в качестве тормозов-замедлителей. Гидравлический тормоз-замедлитель представляет собой обычную гидромуфту, одно из колес которой закреплено неподвижно, а другое установлено на валу трансмиссии (за коробкой передач) и вращается вместе с валом. Тормозной момент гидравлического тормоза-замедлителя зависит от скорости вращения рабочего колеса и количества подаваемой жидкости. Гидравлические тормоза-замедлители имеют большую массу и малоэффективны при небольших скоростях движения автомобиля. Электрический тормоз-замедлитель обычно располагают за коробкой передач. Он представляет собой массивный стальной диск, закрепленный на валу трансмиссии и вращающийся с валом относительно неподвижных электромагнитов. Торможение автомобиля происходит за счет работы, которая затрачивается на преодоление магнитного взаимодействия между вращающимся диском и электромагнитами. Электрические тормоза-замедлители высокоэффективны и обеспечивают плавность торможения автомобиля. Однако они имеют большую массу, дорогостоящи в изготовлении и расходуют дополнительную энергию аккумуляторных батарей. Компрессорный тормоз-замедлитель представляет собой моторный тормоз, использующий противодавление на выпуске при работе двигателя на компрессорном режиме. Механизм моторного тормоза устанавливают в приемной трубе глушителя. В корпусе механизма на валу закреплены заслонка и приводной рычаг. Для создания противодавления при торможении автомобиля приемная труба глушителя перекрывается заслонкой. Одновременно с этим прекращается подача топлива в цилиндры двигателя, и двигатель работает как компрессор. В результате тормозной момент двигателя возрастает почти в два раза по сравнению с моментом при обычном торможении двигателем. Компрессорный тормоз-замедлитель прост по конструкции и не требует больших затрат. Однако он малоэффективен при торможении автомобиля, движущегося на высших передачах. Кроме того, для компрессорного тормоза-замедлителя необходимо специальное устройство, предотвращающее выбрасывание масла из воздушного фильтра двигателя из-за попадания сжатого воздуха в воздушный фильтр. Аэродинамические тормоза-замедлители выполняются в виде специальных щитов, закрылков и парашютов. Ими оборудуются скоростные и гоночные автомобили, движущиеся с высокими скоростями. Аэродинамические тормозные механизмы увеличивают сопротивление воздуха и используются для экстренного вне-колесного торможения автомобилей. |