Главная страница
Навигация по странице:

  • 69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..

  • А. Структура, состав и свойстважирных кислот и ацилглицеролов

  • Таблица 8-1. Строение жирных кислот

  • Структура кислот Насыщенные

  • Арахидоновая

  • Б. Структура и классификацияфосфолипидов и сфинголипидов

  • Таблица 8-4. Классификация глицерофосфолипидов и сфинголипидов

  • Рис. 8-5. Производные сфингозина: церамид и сфингомиелин.

  • biokhimia_Vosstanovlen (Восстановлен). Предмет и задачи биологической химии. Обмен веществ и энергии, сложная структурная организация, гомеостаз и самовоспроизведение как важнейшие признаки живой материи


    Скачать 2.96 Mb.
    НазваниеПредмет и задачи биологической химии. Обмен веществ и энергии, сложная структурная организация, гомеостаз и самовоспроизведение как важнейшие признаки живой материи
    Анкорbiokhimia_Vosstanovlen (Восстановлен).docx
    Дата23.03.2018
    Размер2.96 Mb.
    Формат файлаdocx
    Имя файлаbiokhimia_Vosstanovlen (Восстановлен).docx
    ТипДокументы
    #17124
    страница19 из 25
    1   ...   15   16   17   18   19   20   21   22   ...   25

    Дефект фосфофруктокиназы характерен для гликогеноза VII типа. Больные могут выполнять умеренные физические нагрузки. Течение болезни сходно с гликогенозом V типа, но основные проявления менее выражены.

  • Дефект фосфоглщеромугазы и дефект М-субъединицы ЛДГ (ненумерованные по классификации Кори, см. табл. 7-3) характерны для мышечных форм гликогенозов. Проявления этих патологий аналогичны болезни МакАрдла. Дефект фосфоглицеромутазы в мышцах описан только у одного больного.

    2. Агликогенозы

    Агликогеноз (гликогеноз 0 по классификации) - заболевание, возникающее в результате дефекта гликогенсинтазы. В печени и других тканях больных наблюдают очень низкое содержание гликогена. Это проявляется резко выраженной гипогликемией в постабсорбтивном периоде. Характерный симптом - судороги, проявляющиеся особенно по утрам. Болезнь совместима с жизнью, но больные дети нуждаются в частом кормлении.

    69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..

    Липиды разных классов существенно отличаются по структуре и функциям. Большинство липидов имеют в своём составе жирные кислоты, связанные сложноэфирной связью с глицеролом, холестеролом или амидной связью с аминоспиртом сфингозином.

    А. Структура, состав и свойства
    жирных кислот и ацилглицеролов


    Жирные кислоты в организме человека имеют чётное число атомов углерода, что связано с особенностями их биосинтеза, при котором к углеводородному радикалу жирной кислоты последовательно добавляются двухуглеродные фрагменты.

    Жирные кислоты - структурные компоненты различных липидов. В составе триацилгли-церолов жирные кислоты выполняют функцию депонирования энергии, так как их радикалы содержат богатые энергией СН2-группы. При окислении СН-связей энергии выделяется больше, чем при окислении углеводов, в которых атомы углерода уже частично окислены (-НСОН-). В составе фосфолипидов и сфинго-липидов жирные кислоты образуют внутренний гидрофобный слой мембран, определяя его свойства. Жиры и фосфолипиды организма при нормальной температуре тела имеют жидкую консистенцию, так как количество ненасыщенных жирных кислот преобладает над насыщенными. В фосфолипидах мембран ненасыщенных кислот может быть до 80-85%, а в составе жиров подкожного жира - до 60%.

    В свободном, неэтерифицированном состоянии жирные кислоты в организме содержатся в небольшом количестве, например в крови, где они транспортируются в комплексе с белком альбумином.

    Жирные кислоты липидов человека представляют собой углеводородную неразветвлённую цепь, на одном конце которой находится карбоксильная группа, а на другом - метальная группа (ω-углеродный атом). Большинство жирных кислот в организме содержат чётное число атомов углерода - от 16 до 20 (табл. 8-1 и 8-2). Жирные кислоты, не содержащие двойных связей, называют насыщенными. Основной насыщенной жирной кислотой в липидах человека является пальмитиновая (до 30-35%). Жирные кислоты, содержащие двойные связи, называют ненасыщенными. Ненасыщенные жирные кислоты представлены моноеновыми (с одной двойной связью) и полиеновыми (с двумя и большим числом двойных связей). Если в составе жирной кислоты содержатся две и более двойных связей, то они располагаются через СН2-группу. Имеется несколько способов изображения структуры жирных кислот. При обозначении жирной кислоты цифровым символом (табл. 8-1, вторая графа) общее количество атомов углерода представлено цифрой до двоеточия, после двоеточия указывают число двойных связей. Позицию двойной связи обозначают знаком Δ, после которого указывают номер атома углерода, ближайшего к карбоксилу, у которого находится двойная связь. Например, С18:1Δ9 означает, что жирная кислота содержит 18 атомов углерода и одну двойную связь у 9-го атома углерода, считая от углеродного атома карбоксильной группы. Позиция двойной связи может быть указана и другим способом - по расположению первой двойной связи, считая от метального со-атома углерода жирной кислоты. Например, линоле-вая кислота может быть обозначена как С18:2Δ9,12 или С18:2ω-6. По положению первой двойной связи от метального углерода полиеновые жирные кислоты делят на семейства ω-3 и ω-6.

    Двойные связи в жирных кислотах в организме человека имеют цис-конфигурацию. Это означает, что ацильные фрагменты находятся по одну сторону двойной связи. Цис-конфигурация двойной связи делает алифатическую цепь жирной кислоты изогнутой, что нарушает упорядоченное расположение насыщенных радикалов жирных кислот в фосфолипидах мембран и снижает температуру плавления. Чем больше двойных связей в жирных кислотах липидов, тем ниже температура их плавления. В таблице 8-1 выделены основные жирные кислоты в липидах человека.

    Жирные кислоты с транс-конфигурацией двойной связи могут поступать в организм с пищей, например в составе маргарина. В этих кислотах отсутствует излом, характерный для цис-связи, поэтому жиры, содержащие такие ненасыщенные кислоты, имеют более высокую температуру плавления, т.е. более твёрдые по консистенции.

    Большинство жирных кислот синтезируется в организме человека, однако полиеновые кислоты

    Таблица 8-1. Строение жирных кислот

    Название кислоты

    Cn : m

    ω

    Структура кислот

     

    Насыщенные

     

     

    Миристиновая

    14:0

     

    СН3-(СН2)12СООН

    Пальмитиновая

    16:0

     

    CH3-(CH2)14COOH

    Стеариновая

    18:0

     

    СН3-(СН2)16СООН

     

    Моноеновые

     

     

    Пальмитоолеиновая

    16:1Δ9

     

    СН3-(СН2)5СН=СН-(СН2)7-СООН

    Олеиновая

    18:1Δ9

     

    СН3-(СН2)7СН=СН-(СН2)7СООН

     

    Полиеновые

     

     

    Линолевая*

    18:2Δ9,12

    6

    СН3-(СН2)4-СН=СН-СН2-СН=СН-(СН2)7-СООН

    α-Линоленовая*

    18:3Δ9, 12, 15

    3

    СН3-СН2-СН=СН-СН2-СН=СН-СН2-СН=СН-(СН2)7-СООН

    Эйкозатриеновая

    20:3 Δ8, 11, 14

    6

     

    Арахидоновая**

    20:4Δ5, 8, 11, 14

    6

    СН3-(СН2)3-(СН2-СН=СН)4(СН2)3СООН

    Эйкозапентаеновая (тимнодоновая)

    20:5Δ5,8, 11,14, 17

    3

    СН3-СН2-(СН=СН-СН2)5(СН2)2СООН

    Докозопентаеновая (клупанодоновая)

    22:5Δ7, 10, 13, 16,19

    3

     

    Докозагексаеновая

    22:6Δ4, 7, 10, 13, 16,19

    3

     

    ненасыщенных кислот - жидкими. Жидкие жиры или масла обычно имеют растительное происхождение

    Из животных пищевых жиров наиболее насыщен бараний жир, который практически не содержит незаменимых кислот. Ценными пищевыми жирами являются рыбий жир и растительные масла, содержащие незаменимые жирные кислоты. В организме рыб полиеновые жирные кислоты ω-3 и ω-6 также не синтезируются, рыбы получают их с пищей (водоросли, планктон).

    Б. Структура и классификация
    фосфолипидов и сфинголипидов


    Фосфолипиды - разнообразная группа липидов, содержащих в своём составе остаток фосфорной кислоты. Фосфолипиды делят на глицерофосфолипиды, основу которых составляет трёхатомный спирт глицерол, и сфинго-фосфолипиды - производные аминоспирта сфингозина. Фосфолипиды имеют амфифильные свойства, так как содержат алифатические радикалы жирных кислот и различные полярные группы. Благодаря своим свойствам фосфолипиды не только являются основой всех клеточных мембран, но и выполняют другие функции: образуют поверхностный гидрофильный слой липопротеинов крови, выстилают поверхность альвеол, предотвращая слипание стенок во время выдоха. Некоторые фосфолипиды участвуют в передаче гормонального сигнала в клетки. Сфингомиелины являются фосфолипидами, формирующими структуру миелиновых оболочек и других мембранных структур нервных клеток.

    Глицерофосфолипиды. Структурная основа глицерофосфолипидов - глицерол. Глицерофосфолипиды (ранее используемые названия - фосфоглицериды или фосфоацилглицеролы) представляют собой молекулы, в которых две жирные кислоты связаны сложноэфирной связью с глицеролом в первой и второй позициях; в третьей позиции находится остаток фосфорной кислоты, к которому, в свою очередь, могут быть присоединены различные заместители, чаще всего аминоспирты (табл. 8-4, рис. 8-3). Если в третьем положении имеется только фосфорная кислота, то глицерофосфолипид называется фосфатидной кислотой. Её остаток называют "фосфатидил"; он входит в название остальных глицерофосфолипидов, после которого указывают название заместителя атома водорода в фосфорной кислоте, например фосфатидилэтаноламин, фосфатидилхолин и т.д.

    Фосфатидная кислота в свободном состоянии в организме содержится в небольшом количестве (см. раздел 5, табл. 5), но является промежуточным продуктом на пути синтеза как три-ацилглицеролов, так и глицерофосфолипидов. У глицерофосфолипидов, как и у триацилгли-церолов, во второй позиции находятся преимущественно полиеновые кислоты; в молекуле фосфатидилхолина, входящего в структуру мембран, это чаще всего арахидоновая кислота. Жирные кислоты фосфолипидов мембран отличаются от других липидов человека преобладанием полиеновых кислот (до 80-85%), что обеспечивает жидкое состояние гидрофобного слоя, необходимое для функционирования белков, входящих в структуру мембран.

    Плазмалогены. Плазмалогены - фосфолипиды, у которых в первом положении глицерола находится не жирная кислота, а остаток спирта с длинной алифатической цепью, связанный простой эфирной связью.

    Характерный признак плазмалогенов - двойная связь между первым и вторым атомами углерода в алкильной группе (рис. 8-4). Плазмалогены бывают 3 видов: фосфатидальэтано-ламины, фосфатидальхолины и фосфатидаль-серины. Плазмалогены составляют до 10% фосфолипидов мембран нервной ткани; особенно много их в миелиновых оболочках нервных клеток.

    Некоторые типы плазмалогенов вызывают очень сильные биологические эффекты, действуя

    Таблица 8-4. Классификация глицерофосфолипидов и сфинголипидов

    Ацилглицеролы

    Фосфолипиды

    Сфинголипиды

    Триацилглицеролы

    Сфингомиелины*

    Глицерофосфолипиды:

    Гликолипиды:

    Диацилглицеролы

    Фосфатидилхолин

    Цероброзиды

    Моноацилглицеролы

    Фосфатидилсерин

    Глобозиды

     

    Фосфатидилэтаноламин

    Сульфатиды

     

    Фосфатидилглицерол

    Ганглиозиды

     

    Фосфатидилинозитолбисфосфат

     

     

    Фосфатидная кислота

     

     

    Кардиолипин (дифосфатидилглицерол)

     

    рис. 8-3. основные глицерофосфолипиды в организме человека.

    как медиаторы. Например, Тромбоцитактивирующий фактор (ТАФ) стимулирует агрегацию тромбоцитов. ТАФ отличается от других плазмалогенов отсутствием двойной связи в алкильном радикале и наличием ацетильной группы во втором положении глицерола вместо жирной кислоты.

    ТАФ выделяется из фагоцитирующих клеток крови в ответ на раздражение и стимулирует агрегацию тромбоцитов, участвуя таким образом в свёртывании крови. Этот фактор обусловливает также развитие некоторых признаков воспаления и аллергических реакций.

    Сфинголипиды

    Аминоспирт сфингозин, состоящий из 18 атомов углерода, содержит гидроксильные группы и аминогруппу. Сфингозин образует большую группу липидов, в которых жирная кислота связана с ним через аминогруппу. Продукт взаимодействия сфингозина и жирной кислоты называют "церамид"(рис. 8-5). В церамидах жирные кислоты связаны необычной (амидной) связью, а гидроксильные группы способны взаимодействовать с другими радикалами. Церамиды отличаются радикалами жирных кислот, входящих в их состав. Обычно это жирные кислоты с большой длиной цепи - от 18 до 26 атомов углерода.

    Сфингомиелины. В результате присоединения к ОН-группе церамида фосфорной кислоты, связанной с холином, образуется сфингомие-лин (рис. 8-5). Сфингомиелины - основные компоненты миелина и мембран клеток мозга и нервной ткани. Сфингомиелины, как и глицерофосфолипиды, имеют амфифильные свойства,

    рис. 8-5. производные сфингозина: церамид и сфингомиелин.

    Рис. 8-5. Производные сфингозина: церамид и сфингомиелин.

    обусловленные, с одной стороны, радикалом жирной кислоты и алифатической цепью самого сфингозина, а с другой - полярной областью фосфорилхолина.

    Гликолипиды. Церамиды - основа большой группы липидов - гликолипидов (см. выше табл. 8-4). Водород в гидроксильной группе церамида может быть замещён на разные углеводные фрагменты, что определяет принадлежность гликолипида к определённому классу. Гликолипиды находятся в основном в мембранах клеток нервной ткани. Названия "церебро-зиды" и "ганглиозиды" указывают на ткани, откуда они впервые были выделены.

    Цереброзиды. Цереброзиды имеют в своём составе моносахариды. Наиболее распространены цереброзиды, имеющие в своём составе галактозу (галактоцереброзид), реже - глюкозу (глюкоцереброзид). Цереброзиды содержат необычные жирные кислоты, например, галактоцереброзид френозин содержит цереброновую кислоту - 2-гидроксикислоту, содержащую 24 атома углерода (рис. 8-6).
    1   ...   15   16   17   18   19   20   21   22   ...   25


  • написать администратору сайта