Главная страница

Задач. Задачи по статистике решённые. Пример задания 1


Скачать 1.07 Mb.
НазваниеПример задания 1
АнкорЗадач
Дата08.04.2023
Размер1.07 Mb.
Формат файлаdoc
Имя файлаЗадачи по статистике решённые.doc
ТипЗакон
#1046205
страница7 из 12
1   2   3   4   5   6   7   8   9   ...   12


Таким образом, процесс кластерного анализа закончен. Выделено два

кластера. Расстояние между кластерами равно 9,42. Дендрограмма результа-тов кластерного анализа представлена на рис. 5.4.2

Расстояние

10


9,42



8



6



4
2


1 2 3 4 5 6

Номера объектов
Рис. 5.4.2

Дендрограмма, представленная на рис 5.4.2, отличается от дендрограммы, представленной на рис. 5.1.5. Все остальные результаты примера 5.1 и примера 5.4 одинаковы. Повторим их с изменением номеров таблиц. Представим результаты кластерного анализа в виде совокупности двух матриц: расстояний между объектами (таблица 5.4.7) и символов Кронекера (таблица 5.4.8).

Таблица 5.4.7




1

2

3

4

5

6

1

0

2,83

3,16

10,19

12,17

13,60

2




0

3,16

8,94

10,77

12,53

3







0

7,07

9,06

10,44

4










0

2,00

3,61

5













0

2,24

6
















0


Таблица 5.4.8




1

2

3

4

5

6

1

0

1,00

1,00

0,00

0,00

0,00

2




0

1,00

0,00

0,00

0,00

3







0

0,00

0,00

0,00

4










0

1,00

1,00

5













0

1,00

6
















0


Подсчитаем сумму расстояний между объектами:

0+2,83+3,16+10,19+12,17+13,60+

0+ 0+ 3,16+ 8,94+10,77+12,53+

0+ 0+ 0+ 7,07+ 9,06+10,44+

0+ 0+ 0+ 0+ 2+ 3,61+

0+ 0+ 0+ 0+ 0+ 2,24 =111,77.

Среднее расстояние = 111,77/15=7,45.

Сумма расстояний между объектами, вошедшими в кластеры:
1∙2,83+1∙3,16+1∙3,16+1∙2,00+1∙3,61+1∙2,24=17,00.

Среднее расстояние между объектами в кластерах = 17,00/6=2,83.

Сумма расстояний между объектами, находящимися в разных кластерах:

(1-0)∙10,19+(1-0)∙12,17+(1-0)∙13,60+

+(1-0)∙8,94+(1-0)∙10,77+(1-0)∙12,53+

+(1-0)∙7,07+(1-0)∙9,06+ (1-0)∙10,44= 94,77.

Среднее расстояние между объектами, находящимися в разных кластерах

=94,77/9=10,53.

Таким образом, мы убедились, что условия постановки задачи выполнены, т.е. среднее расстояние между элементами в кластерах более, чем в два с половиной раза меньше чем среднее расстояние между объектами: 7,45/2,83=2,63; а расстояние между объектами, находящимися в различных кластерах почти в полтора раза превышает среднее расстояние между объектами 10,53/7,45=1,41.

Пример 5.5

Евклидово расстояние. По типовым представителям

Требуется разделить шесть объектов на два кластера. Объекты –

информационные системы характеризуются двумя признаками:

Х1-среднее время решения одной задачи в минутах;

Х2-количество задач, в решении которых было отказано ввиду перегрузки информационной системы.

Значения признаков Х1 и Х2 для шести объектов представлены в таблице 5.5.1.

Таблица 5.5.1




1

2

3

4

5

6

X1

2

4

5

12

14

15

X2

8

10

7

6

6

4


Вычислены расстояния между объектами по формуле Евклида по двум признакам, которые представлены в таблице 5.5.2.

Таблица 5.5.2




1

2

3

4

5

6

1

0

2,83

3,16

10,19

12,17

13,60

2




0

3,16

8,94

10,77

12,53

3







0

7,07

9,06

10,44

4










0

2,00

3,61

5













0

2,24

6
















0


Жирным шрифтом в таблице 5.5.2 выделено наибольшее расстояние

между первым и шестым объектами. Их выбираем в качестве типовых и составим матрицу расстояний между выбранными типовыми и остальными объектами и подсчитаем разницу расстояний каждого объекта от типовых. Результаты вычислений представим в таблице 5.5.3.
Таблица 5.5.3




1

6

1-6

6-1

2

2,83

12,53

-9,70

9,70

3

3,16

10,44

-7,28

7,28

4

10,19

3,61

6.51

-6,51

5

12,87

2,24

10,63

-10,63


Жирным шрифтом в таблице 5.5.3 выделены наименьшие расстояния

между первым и вторым объектами и шестым и пятым объектами. Их объединяем в объекты 1,2 и 5,6. Определим расстояния от укрупнённых объектов до третьего и четвёртого объектов, не вошедших в формируемые кластеры по правилу «ближайшего соседа». Аналогично таблице 5.5.3 составим следующую таблицу 5.5.4.

Таблица 5.5.4




1,2

5,6

1,2-5,6

5,6-1,2

3

3,16

9,06

-5,90

5,90

4

8,94

2,00

6,94

-6,94
1   2   3   4   5   6   7   8   9   ...   12


написать администратору сайта