Главная страница
Навигация по странице:

  • Примерная рабочая программа учебного курса «Математика». 5—6 классы Цели изучения учебного курса

  • Место учебного курса в учебном плане

  • Содержание учебного курса (по годам обучения) 5 класс Натуральные числа и нуль

  • 6 класс Натуральные числа

  • Положительные и отрицательные числа

  • планируемые Предметные результаты освоения Примерной рабочей программы курса (по годам обучения)

  • 5 класс Числа и вычисления

  • ООП ООО на 2022-2023 уч г. Программа основного общего образования 2022


    Скачать 1.08 Mb.
    НазваниеПрограмма основного общего образования 2022
    Дата11.04.2023
    Размер1.08 Mb.
    Формат файлаdocx
    Имя файлаООП ООО на 2022-2023 уч г.docx
    ТипПрограмма
    #1054040
    страница30 из 66
    1   ...   26   27   28   29   30   31   32   33   ...   66

    Самоконтроль:

    • владеть способами самопроверки, самоконтроля процесса и результата решения математической задачи;

    • предвидеть трудности, которые могут возникнуть при решении задачи, вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок, выявленных трудностей;

    • оценивать соответствие результата деятельности поставленной цели и условиям, объяснять причины достижения или недостижения цели, находить ошибку, давать оценку приобретённому опыту.

    ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

    Предметные результаты освоения Примерной рабочей программы по математике представлены по годам обучения в следующих разделах программы в рамках отдельных курсов: в 5—6 классах — курса «Математика», в 7—9 классах — курсов «Алгебра», «Геометрия», «Вероятность и статистика».

    Развитие логических представлений и навыков логического мышления осуществляется на протяжении всех лет обучения в основной школе в рамках всех названных курсов. Предполагается, что выпускник основной школы сможет строить высказывания и отрицания высказываний, распознавать истинные и ложные высказывания, приводить примеры и контрпримеры, овладеет понятиями: определение, аксиома, теорема, доказательство — и научится использовать их при выполнении учебных и внеучебных задач.
    Примерная рабочая программа учебного курса «Математика». 5—6 классы

    Цели изучения учебного курса

    Приоритетными целями обучения математике в 5—6 классах являются:

    • продолжение формирования основных математических понятий (число, величина, геометрическая фигура), обеспечивающих преемственность и перспективность математического образования обучающихся;

    • развитие интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, интереса к изучению математики;

    • подведение обучающихся на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира;

    • формирование функциональной математической грамотности: умения распознавать математические объекты в реальных жизненных ситуациях, применять освоенные умения для решения практико-ориентированных задач, интерпретировать полученные результаты и оценивать их на соответствие практической ситуации.


    Основные линии содержания курса математики в 5—6 классах — арифметическая и геометрическая, которые развиваются параллельно, каждая в соответствии с собственной логикой, однако, не независимо одна от другой, а в тесном контакте и взаимодействии. Также в курсе происходит знакомство с элементами алгебры и описательной статистики.

    Изучение арифметического материала начинается со систематизации и развития знаний о натуральных числах, полученных в начальной школе. При этом совершенствование вычислительной техники и формирование новых теоретических знаний сочетается с развитием вычислительной культуры, в частности с обучением простейшим приёмам прикидки и оценки результатов вычислений. Изучение натуральных чисел продолжается в 6 классе знакомством с начальными понятиями теории делимости.

    Другой крупный блок в содержании арифметической линии — это дроби. Начало изучения обыкновенных и десятичных дробей отнесено к 5 классу. Это первый этап в освоении дробей, когда происходит знакомство с основными идеями, понятиями темы. При этом рассмотрение обыкновенных дробей в полном объёме предшествует изучению десятичных дробей, что целесообразно с точки зрения логики изложения числовой линии, когда правила действий с десятичными дробями можно обосновать уже известными алгоритмами выполнения действий с обыкновенными дробями. Знакомство с десятичными дробями расширит возможности для понимания обучающимися прикладного применения новой записи при изучении других предметов и при практическом использовании. К 6 классу отнесён второй этап в изучении дробей, где происходит совершенствование навыков сравнения и преобразования дробей, освоение новых вычислительных алгоритмов, оттачивание техники вычислений, в том числе значений выражений, содержащих и обыкновенные, и десятичные дроби, установление связей между ними, рассмотрение приёмов решения задач на дроби. В начале 6 класса происходит знакомство с понятием процента.

    Особенностью изучения положительных и отрицательных чисел является то, что они также могут рассматриваться в несколько этапов. В 6 классе в начале изучения темы «Положительные и отрицательные числа» выделяется подтема «Целые числа», в рамках которой знакомство с отрицательными числами и действиями с положительными и отрицательными числами происходит на основе содержательного подхода. Это позволяет на доступном уровне познакомить учащихся практически со всеми основными понятиями темы, в том числе и с правилами знаков при выполнении арифметических действий. Изучение рациональных чисел на этом не закончится, а будет продолжено в курсе алгебры 7 класса, что станет следующим проходом всех принципиальных вопросов, тем самым разделение трудностей облегчает восприятие материала, а распределение во времени способствует прочности приобретаемых навыков.

    При обучении решению текстовых задач в 5—6 классах используются арифметические приёмы решения. Текстовые задачи, решаемые при отработке вычислительных навыков в 5—6 классах, рассматриваются задачи следующих видов: задачи на движение, на части, на покупки, на работу и производительность, на проценты, на отношения и пропорции. Кроме того, обучающиеся знакомятся с приёмами решения задач перебором возможных вариантов, учатся работать с информацией, представленной в форме таблиц или диаграмм.

    В Примерной рабочей программе предусмотрено формирование пропедевтических алгебраических представлений. Буква как символ некоторого числа в зависимости от математического контекста вводится постепенно. Буквенная символика широко используется прежде всего для записи общих утверждений и предложений, формул, в частности для вычисления геометрических величин, в качестве «заместителя» числа.

    В курсе «Математики» 5—6 классов представлена наглядная геометрия, направленная на развитие образного мышления, пространственного воображения, изобразительных умений. Это важный этап в изучении геометрии, который осуществляется на наглядно-практическом уровне, опирается на наглядно-образное мышление обучающихся. Большая роль отводится практической деятельности, опыту, эксперименту, моделированию. Обучающиеся знакомятся с геометрическими фигурами на плоскости и в пространстве, с их простейшими конфигурациями, учатся изображать их на нелинованной и клетчатой бумаге, рассматривают их простейшие свойства. В процессе изучения наглядной геометрии знания, полученные обучающимися в начальной школе, систематизируются и расширяются.

    Место учебного курса в учебном плане

    Согласно учебному плану в 5—6 классах изучается интегрированный предмет «Математика», который включает арифметический материал и наглядную геометрию, а также пропедевтические сведения из алгебры, элементы логики и начала описательной статистики.

    Учебный план на изучение математики в 5—6 классах отводит не менее 5 учебных часов в неделю в течение каждого года обучения, всего не менее 340 учебных часов.

    Содержание учебного курса
    (по годам обучения)


    5 класс

    Натуральные числа и нуль

    Натуральное число. Ряд натуральных чисел. Число 0. Изображение натуральных чисел точками на координатной (числовой) прямой.

    Позиционная система счисления. Римская нумерация как пример непозиционной системы счисления. Десятичная система счисления.

    Сравнение натуральных чисел, сравнение натуральных чисел с нулём. Способы сравнения. Округление натуральных чисел.

    Сложение натуральных чисел; свойство нуля при сложении. Вычитание как действие, обратное сложению. Умножение натуральных чисел; свойства нуля и единицы при умножении. Деление как действие, обратное умножению. Компоненты действий, связь между ними. Проверка результата арифметического действия. Переместительное и сочетательное свойства (законы) сложения и умножения, распределительное свойство (закон) умножения.

    Использование букв для обозначения неизвестного компонента и записи свойств арифметических действий.

    Делители и кратные числа, разложение на множители. Простые и составные числа. Признаки делимости на 2, 5, 10, 3, 9. Деление с остатком.

    Степень с натуральным показателем. Запись числа в виде суммы разрядных слагаемых.

    Числовое выражение. Вычисление значений числовых выражений; порядок выполнения действий. Использование при вычислениях переместительного и сочетательного свойств (законов) сложения и умножения, распределительного свойства умножения.

    Дроби

    Представление о дроби как способе записи части величины. Обыкновенные дроби. Правильные и неправильные дроби. Смешанная дробь; представление смешанной дроби в виде неправильной дроби и выделение целой части числа из неправильной дроби. Изображение дробей точками на числовой прямой. Основное свойство дроби. Сокращение дробей. Приведение дроби к новому знаменателю. Сравнение дробей.

    Сложение и вычитание дробей. Умножение и деление дробей; взаимно-обратные дроби. Нахождение части целого и целого по его части.

    Десятичная запись дробей. Представление десятичной дроби в виде обыкновенной. Изображение десятичных дробей точками на числовой прямой. Сравнение десятичных дробей.

    Арифметические действия с десятичными дробями. Округление десятичных дробей.

    Решение текстовых задач

    Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором всех возможных вариантов. Использование при решении задач таблиц и схем.

    Решение задач, содержащих зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость. Единицы измерения: массы, объёма, цены; расстояния, времени, скорости. Связь между единицами измерения каждой величины.

    Решение основных задач на дроби.

    Представление данных в виде таблиц, столбчатых диаграмм.

    Наглядная геометрия

    Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Угол. Прямой, острый, тупой и развёрнутый углы.

    Длина отрезка, метрические единицы длины. Длина ломаной, периметр многоугольника. Измерение и построение углов с помощью транспортира.

    Наглядные представления о фигурах на плоскости: многоугольник; прямоугольник, квадрат; треугольник, о равенстве фигур.

    Изображение фигур, в том числе на клетчатой бумаге. Построение конфигураций из частей прямой, окружности на нелинованной и клетчатой бумаге. Использование свойств сторон и углов прямоугольника, квадрата.

    Площадь прямоугольника и многоугольников, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге. Единицы измерения площади.

    Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, многогранники. Изображение простейших многогранников. Развёртки куба и параллелепипеда. Создание моделей многогранников (из бумаги, проволоки, пластилина и др.).

    Объём прямоугольного параллелепипеда, куба. Единицы измерения объёма.

    6 класс

    Натуральные числа

    Арифметические действия с многозначными натуральными числами. Числовые выражения, порядок действий, использование скобок. Использование при вычислениях переместительного и сочетательного свойств сложения и умножения, распределительного свойства умножения. Округление натуральных чисел.

    Делители и кратные числа; наибольший общий делитель и наименьшее общее кратное. Делимость суммы и произведения. Деление с остатком.

    Дроби

    Обыкновенная дробь, основное свойство дроби, сокращение дробей. Сравнение и упорядочивание дробей. Решение задач на нахождение части от целого и целого по его части. Дробное число как результат деления. Представление десятичной дроби в виде обыкновенной дроби и возможность представления обыкновенной дроби в виде десятичной. Десятичные дроби и метрическая система мер. Арифметические действия и числовые выражения с обыкновенными и десятичными дробями.

    Отношение. Деление в данном отношении. Масштаб, пропорция. Применение пропорций при решении задач.

    Понятие процента. Вычисление процента от величины и величины по её проценту. Выражение процентов десятичными дробями. Решение задач на проценты. Выражение отношения величин в процентах.

    Положительные и отрицательные числа

    Положительные и отрицательные числа. Целые числа. Модуль числа, геометрическая интерпретация модуля числа. Изображение чисел на координатной прямой. Числовые промежутки.

    Сравнение чисел. Арифметические действия с положительными и отрицательными числами.

    Прямоугольная система координат на плоскости. Координаты точки на плоскости, абсцисса и ордината. Построение точек и фигур на координатной плоскости.

    Буквенные выражения

    Применение букв для записи математических выражений и предложений. Свойства арифметических действий. Буквенные выражения и числовые подстановки. Буквенные равенства, нахождение неизвестного компонента. Формулы; формулы периметра и площади прямоугольника, квадрата, объёма параллелепипеда и куба.

    Решение текстовых задач

    Решение текстовых задач арифметическим способом. Решение логических задач. Решение задач перебором всех возможных вариантов.

    Решение задач, содержащих зависимости, связывающих величины: скорость, время, расстояние; цена, количество, стоимость; производительность, время, объём работы. Единицы измерения: массы, стоимости; расстояния, времени, скорости. Связь между единицами измерения каждой величины.

    Решение задач, связанных с отношением, пропорциональностью величин, процентами; решение основных задач на дроби и проценты.

    Оценка и прикидка, округление результата.

    Составление буквенных выражений по условию задачи.

    Представление данных с помощью таблиц и диаграмм. Столбчатые диаграммы: чтение и построение. Чтение круговых диаграмм.

    Наглядная геометрия

    Наглядные представления о фигурах на плоскости: точка, прямая, отрезок, луч, угол, ломаная, многоугольник, четырёхугольник, треугольник, окружность, круг.

    Взаимное расположение двух прямых на плоскости, параллельные прямые, перпендикулярные прямые. Измерение расстояний: между двумя точками, от точки до прямой; длина маршрута на квадратной сетке.

    Измерение и построение углов с помощью транспортира. Виды треугольников: остроугольный, прямоугольный, тупоугольный; равнобедренный, равносторонний. Четырёхугольник, примеры четырёхугольников. Прямоугольник, квадрат: использование свойств сторон, углов, диагоналей. Изображение геометрических фигур на нелинованной бумаге с использованием циркуля, линейки, угольника, транспортира. Построения на клетчатой бумаге.

    Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Приближённое измерение площади фигур, в том числе на квадратной сетке. Приближённое измерение длины окружности, площади круга.

    Симметрия: центральная, осевая и зеркальная симметрии. Построение симметричных фигур.

    Наглядные представления о пространственных фигурах: параллелепипед, куб, призма, пирамида, конус, цилиндр, шар и сфера. Изображение пространственных фигур. Примеры развёрток многогранников, цилиндра и конуса. Создание моделей пространственных фигур (из бумаги, проволоки, пластилина и др.).

    Понятие объёма; единицы измерения объёма. Объём прямоугольного параллелепипеда, куба.

    планируемые Предметные результаты освоения Примерной рабочей программы курса (по годам обучения)

    Освоение учебного курса «Математика» в 5—6 классах основной школы должно обеспечивать достижение следующих предметных образовательных результатов:

    5 класс

    Числа и вычисления

    • Понимать и правильно употреблять термины, связанные с натуральными числами, обыкновенными и десятичными дробями.

    • Сравнивать и упорядочивать натуральные числа, сравнивать в простейших случаях обыкновенные дроби, десятичные дроби.

    • Соотносить точку на координатной (числовой) прямой с соответствующим ей числом и изображать натуральные числа точками на координатной (числовой) прямой.

    • Выполнять арифметические действия с натуральными числами, с обыкновенными дробями в простейших случаях.

    • Выполнять проверку, прикидку результата вычислений.

    • Округлять натуральные числа.

    Решение текстовых задач

    • Решать текстовые задачи арифметическим способом и с помощью организованного конечного перебора всех возможных вариантов.

    • Решать задачи, содержащие зависимости, связывающие величины: скорость, время, расстояние; цена, количество, стоимость.

    • Использовать краткие записи, схемы, таблицы, обозначения при решении задач.

    • Пользоваться основными единицами измерения: цены, массы; расстояния, времени, скорости; выражать одни единицы величины через другие.

    • Извлекать, анализировать, оценивать информацию, представленную в таблице, на столбчатой диаграмме, интерпретировать представленные данные, использовать данные при решении задач.

    Наглядная геометрия

    • Пользоваться геометрическими понятиями: точка, прямая, отрезок, луч, угол, многоугольник, окружность, круг.

    • Приводить примеры объектов окружающего мира, имеющих форму изученных геометрических фигур.

    • Использовать терминологию, связанную с углами: вершина сторона; с многоугольниками: угол, вершина, сторона, диагональ; с окружностью: радиус, диаметр, центр.

    • Изображать изученные геометрические фигуры на нелинованной и клетчатой бумаге с помощью циркуля и линейки.

    • Находить длины отрезков непосредственным измерением с помощью линейки, строить отрезки заданной длины; строить окружность заданного радиуса.

    • Использовать свойства сторон и углов прямоугольника, квадрата для их построения, вычисления площади и периметра.

    • Вычислять периметр и площадь квадрата, прямоугольника, фигур, составленных из прямоугольников, в том числе фигур, изображённых на клетчатой бумаге.

    • Пользоваться основными метрическими единицами измерения длины, площади; выражать одни единицы величины через другие.

    • Распознавать параллелепипед, куб, использовать терминологию: вершина, ребро грань, измерения; находить измерения параллелепипеда, куба.

    • Вычислять объём куба, параллелепипеда по заданным измерениям, пользоваться единицами измерения объёма.

    • Решать несложные задачи на измерение геометрических величин в практических ситуациях.
    1   ...   26   27   28   29   30   31   32   33   ...   66


    написать администратору сайта