Математика Никольский 7-9. Рабочая программа по учебному предмету Алгебра ( умк Алгебра авторов Никольский)
Скачать 100.34 Kb.
|
2. Содержание учебного предмета (алгебра 7-9 класс) Действительные числа Расширение множества натуральных чисел до множества целых, множества целых до множества рациональных. Рациональное число как отношение , гдеm– целое число, n – натуральное число. Степень с целым показателем. Квадратный корень из числа. Корень третьей степени. Запись корней с помощью степени с дробным показателем. Понятие об иррациональном числе. Иррациональность числа и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел бесконечными десятичными дробями. Сравнение действительных чисел. Взаимно однозначное соответствие между действительными числами и точками координатной прямой. Числовые промежутки; интервал, отрезок, луч. Измерения, приближения, оценки Приближённое значение величины, точность приближения. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя – степени 10 в записи числа. Прикидка и оценка результатов вычислений. Введение в алгебру Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество. Многочлены Степень с натуральным показателем и её свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращённого умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Многочлены с одной переменной. Корень многочлена. Квадратный трёхчлен, разложение квадратного трёхчлена на множители. Алгебраические дроби Алгебраическая дробь. Основное свойство алгебраической дроби. Сокращение дробей. Сложение, вычитание, умножение и деление алгебраических дробей. Степень с целым показателем и её свойства. Рациональные выражения и их преобразования. Квадратные корни Понятие квадратного корня; арифметического квадратного корня. Уравнение вида х2 = а. Свойства арифметических квадратных корней: корень из произведения, частного, степени; тождества ( )2 = а, где а ≥ 0, 2 = │а│. Применение свойств арифметических квадратных корней к преобразованию числовых выражений и к вычислениям. Уравнение с одной переменной Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Решение уравнений, сводящихся к линейным. Квадратное уравнение. Неполные квадратные уравнения. Формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к квадратным. Биквадратное уравнение. Примеры решения уравнений третьей и четвёртой степеней разложением на множители. Решение дробно-рациональных уравнений. Решение текстовых задач алгебраическим способом. Системы уравнений Уравнение с двумя переменными. Линейные уравнения с двумя переменными. Примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем уравнений. Система двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Решение систем двух уравнений, одно из которых линейное, а другое – второй степени. Примеры решения систем нелинейных уравнений. Решение текстовых задач алгебраическим способом. Неравенства Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы линейных неравенств с одной переменной. Зависимости между величинами Зависимость между величинами. Представление зависимостей между величинами в виде формул. Вычисления по формулам. Прямая пропорциональная зависимость: задание формулой, коэффициент пропорциональности; свойства. Примеры прямо пропорциональных зависимостей. Обратная пропорциональная зависимость: задание формулой, коэффициент обратной пропорциональности; свойства. Примеры обратных пропорциональных зависимостей. Решение задач на прямую пропорциональную и обратную пропорциональную зависимости. Числовые функции Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функции, их отображение на графике: возрастание и убывание функции, нули функции, сохранение знака. Чтение и построение графиков функций. Примеры графиков зависимостей, отражающих реальные процессы. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики. Линейная функция, её график и свойства. Квадратная функция, её график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций у = , у = , у = |х|. Числовые последовательности. Арифметическая и геометрическая прогрессии Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспонециальный рост. Сложные проценты. Описательная статистика Представление данных в виде таблиц , диаграмм. Графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах, дисперсия. Репрезентативные и непрезентативные выборки. Случайные события и вероятность Понятие о случайном опыте и случайном событии. Элементарные события. Частота случайного события. Статистический подход к понятию вероятностей. Вероятности противоположных событий. Независимые события. Умножение вероятностей. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности. Элементы комбинаторики Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал. Множества. Элементы логики Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств, разность множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна. Иллюстрация отношений между множествами с помощью диаграмм Эйлера-Венна. Понятие о равносильности, следовании, употребление логических связок если…, то…, в том и только в том случае. Логические связки и, или. 2. Содержание учебного предмета (геометрия 7-9 класс) 1.Начальные геометрические сведения Начальные понятия планиметрии. Геометрические фигуры. Понятие о равенстве фигур. Отрезок. Равенство отрезков. Длина отрезка и её свойства. Угол. Равенство углов. Величина угла и её свойства. Смежные и вертикальные углы и их свойства. Перпендикулярные прямые. Основная цель – систематизировать знания учащихся об основных свойствах простейших геометрических фигур, ввести понятия равенства фигур. Материал данной темы посвящён введению основных геометрических понятий. Основное внимание уделяется двум аспектам: понятию равенства геометрических фигур (отрезков, углов) и свойствам измерения отрезков и углов. Изучение темы решает задачу введения терминологии, развития навыков изображения планиметрических фигур и простейших геометрических конфигураций, связанных с условиями решаемых задач. 2.Треугольники Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Основные задачи на построение с помощью циркуля и линейки. Основная цель – сформировать умение доказывать равенство данных треугольников, опираясь на изученные признаки; отработать навыки решения простейших задач на построение с помощью циркуля и линейки. Основное внимание уделяется формированию у учащихся умения доказывать равенство треугольников, т.е. выделять равенство трёх соответствующих элементов данных треугольников и делать ссылки на изученные признаки. 3.Параллельные прямые Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых. Основная цель – дать систематические сведения о параллельности прямых; ввести аксиому параллельных прямых. Знания признаков параллельности прямых, свойств углов при параллельных прямых и секущей. Находить равные углы при параллельных прямых и секущей. 4.Соотношения между сторонами и углами треугольника Сумма углов треугольника. Соотношения между сторонами и углами треугольника. Неравенство треугольника. Некоторые свойства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Задачи на построение. Основная цель – расширить знания учащихся о треугольниках. Важнейшая теорема о сумме углов треугольника и следствия – свойство внешнего угла треугольника, некоторые свойства и признаки прямоугольных треугольников. 5.Четырехугольники Понятия многоугольника, выпуклого многоугольника. Параллелограмм и его признаки и свойства. Трапеция. Прямоугольник, ромб, квадрат и их свойства. Осевая и центральная симметрии. 6.Площади фигур Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. Теорема Пифагора» 7.Подобные треугольники Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательствам теорем и решению задач. Соотношения между сторонами и углами прямоугольного треугольника. 8.Окружность Касательная к окружности и ее свойства. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности. Векторы. Метод координат Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач. Соотношения между сторонами и углами треугольника. Скалярное произведение векторов Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. Длина окружности и площадь круга Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга. Движения Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения. 3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы 9 класс (165 часов)
|