Главная страница
Навигация по странице:

  • 77. Оборудование для отделения жидкости от газа. Нефтяные сепараторы. Принципы действия и конструкции сепараторов. Показатели технического совершенства сепараторов.

  • 78. Установки комплексной подготовки нефти. Структурная схема УКПН. Обезвоживание. Обессоливание. Дегазирование. Сущность процессов. Применяемое оборудование.

  • вааааавыа. Разработка понятие о системе разработки залежей нефти. Рациональная система разработки. Параметры системы разработки


    Скачать 4.48 Mb.
    НазваниеРазработка понятие о системе разработки залежей нефти. Рациональная система разработки. Параметры системы разработки
    Анкорвааааавыа
    Дата04.04.2023
    Размер4.48 Mb.
    Формат файлаdocx
    Имя файлаOTVETY_1.docx
    ТипДокументы
    #1037450
    страница23 из 25
    1   ...   17   18   19   20   21   22   23   24   25

    75. Условия образований водонефтяных эмульсий при добыче нефти. Экстремальные вязкости эмульсий. Способы предупреждения разрушения эмульсий.

    Для правильного выбора способа обезвоживания нефти (деэмульсации) необходимо знать механизм образования эмульсий и их свойства.

    В пластовых условиях нефтяные эмульсии не образуются. Образование эмульсий уже начинается при движении нефти к устью скважины и продолжается при дальнейшем движении по промысловым коммуникациям, т.е. эмульсии образуются там, где происходит непрерывное перемешивание нефти и воды. Интенсивность образования эмульсий в скважине во многом зависит от способа добычи нефти, которая в свою очередь определяется характером месторождения, периодом его эксплуатации и физико-химическими свойствам самой нефти.

    При фонтанном способе, который характерен для начального периода эксплуатации залежи нефти, происходит интенсивный отбор жидкости из скважины. Интенсивность перемешивания нефти с водой в подъемных трубах скважины увеличивается из-за выделения растворенных газов при снижении давления ниже давления насыщения, что приводит к образованию эмульсий уже на ранней стадии движения смеси нефти с водой.

    При глубиннонасосной добыче нефти эмульгирование происходит в клапанных коробках, самих клапанах, в цилиндре насоса, в подъемных трубах при возвратно-поступательном движении насосных штанг. При использовании алектропогружных насосов перемешивание воды с нефтью происходит на рабочих колесах насоса, в подъемных трубах.

    В компрессорных скважинах причины образования эмульсий те же, что и при фонтанной добыче. Особенно отрицательно влияет воздух, закачиваемый иногда вместо газа в скважину, который окисляет часть тяжелых углеводородов с образованием асфальто-смолистых веществ. Наличие солей нафтеновых кислот и асфальто-смолистых веществ приводит к образованию эмульсий, отличающихся высокой стойкостью.

    В эмульсиях принято различать две фазы - внутреннюю и внешнюю. Внешнюю фазу - жидкость, в которой размещаются мельчайшие капли другой жидкости, называют дисперсионной, внешней или сплошной средой. Внутреннюю фазу - жидкость, находящуюся в виде мелких капель в дисперсионной среде, принято называть дисперсной, разобщенной или внутренней фазой.

    Различают два типа эмульсий - "нефть в воде" (н/в) и "вода в нефти" (в/н). Тип образующейся эмульсии в основном зависит от соотношения объемов двух фаз, дисперсионной средой стремится стать та жидкость, объем которой больше. На практике наиболее часто (95%) встречаются эмульсии тина "вода в нефти".

    На способность эмульгирования нефти и воды кроме соотношения фаз оказывает влияние присутствие эмульгаторов. Эмульгаторы - это вещества, которые способствуют образованию эмульсин. Они понижают поверхностное натяжение на границе раздела фаз и создают вокруг частиц дисперсной фазы прочные адсорбционные оболочки. Эмульгаторы, растворимые в воде, способствуют созданию эмульсии "нефть в воде". К таким гидрофильным эмульгаторам относятся щелочные мыла, желатин, крахмал и др. Гидрофобные эмульгаторы (т.е. растворимые в нефти) способствуют образованию эмульсий "вода в нефти". К ним относятся хорошо растворимые в нефти щелочноземельные соли органических кислот, смолы, мелкодисперсные частицы сажи, глины и других веществ, которые легче смачиваются нефтью, чем водой. Нефтяные эмульсии характеризуются вязкостью, дисперсностью, плотностью, электрическими свойствами и стойкостью. Вязкость нефтяной эмульсии изменяется в широких диапазонах и зависит от собственной вязкости нефти, температуры, соотношения нефти и воды.

    Нефтяные эмульсии, являясь дисперсными системами, при определенных условиях обладают аномальными свойствами, т.е. являются неньютоновскими жидкостями. Как и для всех неньютоновских жидкостей вязкостные свойства нефтяных эмульсий характеризуются кажущейся (эффективной) вязкостью.

    Дисперсностью эмульсии принято называть степень раздробленности капель дисперсной фазы в дисперсионной среде. Дисперсность характеризуется одной из трех взаимосвязанных величин: диаметром капель d, обратной величиной диаметра капель D == 1/d, обычно называемой дисперсностью или удельной межфазной поверхностью, которая является отношением суммарной поверхности частиц к их общему объему.

    В зависимости от физико-химических свойств нефти и воды, а также условий образования эмульсий размеры капель могут быть самыми разнообразными и колебаться в пределах от 0,1 мкм до нескольких десятых миллиметра. Дисперсные системы, состоящие из капель одного диаметра, называются монодисперсными, а системы, состоящие из капель разных размеров, - полидисперсными. Нефтяные эмульсии относятся к полидисперсным системам, так как содержат частицы разных размеров.

    Критические размеры капель, которые могут существовать в потоке при данном термодинамическом режиме, определяются скоростью совместного движения воды и нефти, величиной поверхностного натяжения на границе раздела фаз и масштабом пульсации потока.

    В турбулентном потоке возникают зоны, обусловленные неравномерностью пульсации и наличием переменного по сечению трубопровода градиента скорости, в которых возможно существование капель различного диаметра. Мелкие капли, перемещаясь по сечению трубопровода и попадая в зоны более низких градиентов скорости и меньших масштабов пульсации, испытывают тенденцию к укрупнению, а попадая в зоны высоких градиентов и больших масштабов пульсаций - испытывают тенденцию к дроблению. Наличие дополнительных факторов (нагрев, введение деэмульгаторов и др.) при определенных гидродинамических условиях может привести к разделению фаз эмульсии, транспортируемой по трубопроводам.

    Устойчивость эмульсий в большей степени зависит от состава компонентов, входящих в защитную оболочку, которая образуется на поверхности капли.На поверхности капли также адсорбируются, покрывая ее бронирующим слоем, стабилизирующие вещества, называемые эмульгаторами В дальнейшем этот сдой препятствует слиянию капель, т.е. затрудняет деэмульсацию и способствует образованию стойкой эмульсии.

    Существенно влияет на устойчивость нефтяных эмульсий состав пластовой воды. Пластовые воды разнообразны по химическому составу, но все они могут быть разделены на две основные группы: первая группа - жесткая вода содержит хлоркальциевые иди хлоркальциевомагниевые

    соединения; вторая группа - щелочная или гидрокарбонатнонатриевая вода. Увеличение кислотности пластовых вод приводит к получению более стойких эмульсий. Уменьшение кислотности воды достигается введением в эмульсию щелочи, ,способствующей снижению прочности бронирующих слоев и, как следствие, разделению нефтяной эмульсии на составные компоненты.

    Процессы разрушения нефтяных эмульсий можно разделить на два этапа:

    1) слияние капель диспергированной воды до размеров, достаточных для слияния их под действием силы тяжести,

    2) осаждение укрупнившихся капель воды. Капли, сближаясь, постепенно выдавливают и разрушают защитные слои. Если сила взаимодействия достаточна для полного разрушения защитных слоев, капли немедленно сливаются.

    В практике для увеличения этих сил прибегают к способам, позволяющим ускорить движение капель в определенном направлении. С этой целью нефтяные эмульсии обрабатывают в электрическом поле, подогревают, центрифугируют.

    С повышением температуры значительно улучшаются условия осаждения капель воды вследствие увеличения разности удельных весов и снижения вязкости.

    Однако не скорость осаждения капель воды имеет решающее значение при расслаивании эмульсии, хотя это и имеет определенное влияние, а разрушение защитных пленок и агрегирование капель в крупные, способные преодолеть вязкость среды.

    Центрифугирование производят в центрифуге, которая представляет собой вращающийся с большой скоростью ротор. Эмульсия подается в ротор по полому валу. Под действием сил инерции эмульсия разделяется, так как вода и нефть имеют разные значения плотности.

    Воздействие на эмульсии электрическим полем производят в электродегидраторах, снабженных электродами, к которым подводится высокое напряжение переменного тока промышленной частоты. Под действием электрического поля на противоположных концах капель воды появляются разноименные электрические заряды. В результате капли притягиваются, сливаются в более крупные и оседают на дно емкости

    76. Промысловый сбор и подготовка скважинной продукции. Технологическое оборудование системы подготовки нефти до товарных качественных характеристик. Контроль качества товарной продукции в соответствии с требованиями ГОСТов.

    Системы сбора и подготовки нефти и газа состоят из разветвленной сети трубопроводов, замерных установок, сепарационных пунктов, резервуарных парков, установок комплексной подготовки нефти, установок подготовки воды, насосных и компрессорных станций. Трубопроводы от скважин до замерных установок называют выкидными линиями. Иногда сбор безводной и обводненной нефти, легкой и тяжелой осуществляется по разным нефтесборным коллекторам, чтобы исключить их смешивание.

    Выбор системы сбора определяется условиями добычи нефти и газа на данном месторождении – составом и физическими свойствами нефти, устьевыми давлениями и температурами, газовым фактором, сеткой расположения скважин, рельефом местности.

    Технологическая модель современной системы сбора промысловой продукции, транспорта и подготовки нефти и воды состоит из следующих элементов, которые представлены на рисунке 13.1.

    Элемент 1. Участок от устья добывающих скважин до групповых замерных установок (ГЗУ), здесь продукция скважин в виде трехфазной смеси (нефть, газ, вода) по трубопроводам перекачивается до узла первичного замера и учета продукции (выкидные линии).

    Элемент 2. Включает участок от ГЗУ до дожимных насосных станций (ДНС), где продукция скважин разделяется на жидкую и газовую фазы (первая ступень сепарации). На данном участке возможно образование достаточно высокодисперсной водогазонефтяной эмульсии, стойкость которой будет зависеть от физико-химических характеристик конкретной нефти и воды (сборный коллектор).

    Элемент 3. ДНС – газосборная сеть (ГСС). В этом элементе нефтяной газ из сепараторов, являющихся первой ступенью сепарации, отбирается в газосборную сеть под давлением узла сепарации.

    Элемент 4. ДНС – УКПН. Данный элемент включает участок от ДНС до установки комплексной подготовки нефти (УКПН). В некоторых нефтяных регионах такой узел называют «центральный пункт сбора продукции » (ЦПС).

    Элемент 5. ДНС – установка предварительного сброса воды (УПСВ). Часто данный элемент бывает совмещенным с одновременным отделением газа первой ступени сепарации; затем вода проходит доочистку до нужного качества.

    Элемент 6. УПСВ – КНС. Отделившаяся вода необходимого качества и количества из емкостей УПСВ (отстойные аппараты) силовыми насосами подается на кустовую насосную станцию (КНС) для нагнетания в пласт.

    Элемент 7. УКПН – установка подготовки воды. Этот элемент также является совмещенным, т.к. одна из ступеней используется для отделения и очистки водной фазы, а вторая – для разделения и разрушения эмульсии промежуточного слоя, которая накапливается в резервуарах товарного парка.

    Элемент 8. Установка подготовки воды – КНС. Вся водная фаза (как сточная вода) с узла подготовки воды по отдельному трубопроводу транспортируется в этом элементе до кустовой насосной станции.

    Элемент 9. КНС – нагнетательная скважина (пласт). На этом участке очищенная от мехпримесей и нефтепродуктов сточная вода силовыми насосами КНС закачивается в нагнетательную скважину и далее в пласт.

    В основу схем положено совмещение в системе герметизированного нефтегазосбора процессов транспорта и подготовки продукции скважин для ее последующего разделения в специальном оборудовании при максимальном концентрировании основного оборудования по подготовке нефти, газа и воды на центральных нефтесборных пунктах (ЦНП). Это дает возможность автоматизировать промысловые объекты с капитальными наименьшими вложениями.

    Существует несколько вариантов унифицированных технологических схем. Например:

    1. Первая ступень сепарации размещается на площадке ДНС, осуществляется предварительное обезвоживание нефти при давлении I ступени сепарации. Качество сбрасываемой пластовой воды должно удовлетворять требованиям к ее закачке в трещиновато-пористые коллекторы как наиболее распространенные.

    2. На месторождении размещается сепарационная установка без сброса воды.

    Нефть, прошедшая установки подготовки, называется товарной.

    Нефти различных месторождений отличаются по химическому составу и товарным свойствам. Из некоторых нефтей можно получить без дополнительной обработки высокооктановый бензин; другие, например, мангышлакская, содержат в большом количестве парафины, являющиеся ценным химическим сырьем.

    На практике нефти смешиваются в районах добычи и направляются на переработку в виде смеси

    77. Оборудование для отделения жидкости от газа. Нефтяные сепараторы. Принципы действия и конструкции сепараторов. Показатели технического совершенства сепараторов.

    В процессе подъема жидкости из скважин и транспорта ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается и обычно в несколько десятков раз превышает объем жидкости. Поэтому при низких давлениях их совместное хранение, а иногда и сбор становятся нецелесообразными. Приходиться осуществлять их раздельный сбор и хранение.

    Процесс отделения газа от нефти называется сепарацией. Аппарат, в котором происходит отделеие газа от продукции нефтяных скважин, называют газосепаратором.
    В современных системах сбора нефти и газа газосепараторами оснащаются все блочные автоматизированные групповые замерные установки (за исключением установок, оснащенных массовыми расходомерами), дожимные насосные станции и центральные пункты сбора и подготовки нефти, газа и воды.
    Сепарация газа от нефти может происходить под влиянием гравитационных, инерционных сил и за счет селективной смачиваемости нефти. В зависимости от этого и различают гравитационную, инерционную и пленочную сепарации, а газосепараторы - гравитационные, гидроциклонные и жалюзийные.
    Гравитационная сепарация осуществляется вследствие разности плотностей жидкости и газа, т.е. под действием их силы тяжести. Газосепараторы, работающие на этом принципе, называются гравитационными.
    Наибольшее распространение на нефтяных месторождениях получили горизонтальные сепараторы, характеризующие повышенной пропускной способностью при одном и том же объеме аппарата, лучшим качеством сепарации, простотой обслуживания и осмотра по сравнению с вертикальными.
    Сепаратор типа НГС (рис.62) состоит из горизонтальной емкости 1, оснащенной патрубками для входа продукции 2, для выхода нефти 10 и газа 7. Внутри емкости непосредственно у патрубка для входа нефтегазовой смеси смонтированы распределительное устройство 3 и наклонные желоба (дефлекторы) 4 и 5. Возле патрубка, через который осуществляется выход газа, установлены горизонтальный 8 и вертикальный 6 сетчатые отбойники. Кроме того, аппарат снабжен штуцерами и муфтами для монтажа приборов сигнализации и автоматического регулирования режима работы.
    Газонефтяная смесь поступает в аппарат через входной патрубок 3, изменяет свое направление на 90°, и при помощи распределительного устройства нефть вместе с остаточным газом направляется сначала в верхние наклонные желоба 4, а затем в нижние 5. Отделившийся из нефти газ проходит сначала вертикальный каплеотбойник 6, а затем горизонтальный 8. Эти каплеотбойники осуществляют тонкую очистку газа от капельной жидкости (эффективность свыше 99%), что позволяет отказаться от установки дополнительного сепаратора газа. Выделившийся в сепараторе газ через патрубок 7, задвижку и регулирующий клапан (на рис.62 не показаны) поступает в газосборную сеть



    Отсепарированная нефть, скопившаяся в нижней секции сбора жидкости сепаратора, через выходной патрубок 10 направляется на следующую ступень сепарации или, в случае использования аппарата на последней ступени, в резервуар. Для устранения возможности воронкообразования и попадания газа в выкидную линию над патрубком выхода нефти устанавливается диск 9..

    78. Установки комплексной подготовки нефти. Структурная схема УКПН. Обезвоживание. Обессоливание. Дегазирование. Сущность процессов. Применяемое оборудование.

    На нефтяных промыслах чаще всего используют централизованную схему сбора и подготовки нефти (рис.4.1). Сбор продукции производят от группы скважин на автоматизированные групповые замерные установки (АГЗУ). От каждой скважины по индивидуальному трубопроводу на АГЗУ поступает нефть вместе с газом и пластовой водой. На АГЗУ производят учет точного количества поступающей от каждой скважины нефти, а также первичную сепарацию для частичного отделения пластовой воды, нефтяного газа и механических примесей с направлением отделенного газа по газопроводу на ГПЗ (газоперерабатывающий завод). Частично обезвоженная и частично дегазированная нефть поступает по сборному коллектору на центральный пункт сбора (ЦПС). Обычно на одном нефтяном месторождении устраивают один ЦПС. Но в ряде случаев один ЦПС устраивают на несколько месторождений с размещением его на более крупном месторождении. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где частично производится обработка нефти. На ЦПС сосредоточены установки по подготовке нефти и воды. На установке по подготовке нефти осуществляют в комплексе все технологические операции по ее подготовке. Комплект этого оборудования называется УКПН - установка по комплексной подготовке нефти.



    Рис. 4.1. Схема сбора и подготовки продукции скважин на нефтяном промысле:

    1 - нефтяная скважина; 2 - автоматизированные групповые замерные установки (АГЗУ); 3 - дожимная насосная станция (ДНС); 4 - установка очистки пластовой воды; 5 - установка подготовки нефти; 6 - газокомпрессорная станция; 7 - центральный пункт сбора нефти, газа и воды; 8 - резервуарный парк

    Обезвоженная, обессоленная и дегазированная нефть после завершения окончательного контроля поступает в резервуары товарной нефти и затем на головную насосную станцию магистрального нефтепровода.
    1   ...   17   18   19   20   21   22   23   24   25


    написать администратору сайта