Главная страница

Абдулхаев И.1. Реферат по дисциплине Численные методы и программирование


Скачать 0.98 Mb.
НазваниеРеферат по дисциплине Численные методы и программирование
Дата19.12.2022
Размер0.98 Mb.
Формат файлаdocx
Имя файлаАбдулхаев И.1.docx
ТипРеферат
#853789
страница2 из 7
1   2   3   4   5   6   7





создатели неевклидовой геометрии могли бы обратить свой гений на другие вещи.

О себе Гаусс говорил, что он «во всем математик». Это верно, если учесть, что «математик» его дней включал также того, кого теперь можно назвать занимающимся математической физикой. Действительно, его девиз: Ты, природа, моя богиня, И я служу твоим законам...



Три года в Гёттингенском университете (октябрь 1795 -- сентябрь 1798) были наиболее плодотворными в жизни Гаусса. Он погрузился в работу. Друзей у него было немного. Один из них -- Вольфганг (Фаркаш) Бойяи -- стал другом на всю жизнь. Течение этой дружбы и ее значение в истории неевклидовой геометрии потребовали бы слишком много места для рассказа о них здесь. Сыну Вольфганга, Иоганну (Яношу), пришлось пройти практически тот же путь, которому следовал Гаусс, чтобы создать неевклидову геометрию в полном неведении того, что старый друг отца предвосхитил его. С 1795 г. он замыслил большое сочинение по теории чисел. Теперь оно принимает определенную форму, и к 1798 г. «Арифметические исследования» (Disquisitiones Arithmeticae) были практически закончены.

Чтобы ознакомиться с тем, что уже было сделано в высшей арифметике, и увериться, что он предоставляет должный кредит своим предшественникам, Гаусс в сентябре 1798 г. отправился в Хельмштедт, где была хорошая математическая библиотека. Там он обнаружил, что его слава опередила его. Он был сердечно принят ведавшим библиотекой профессором математики Иоганном Фридрихом Пфаффом (1765 -- 1825), в доме которого и поселился. Гаусс и Пфафф стали пылкими друзьями. Пфафф, очевидно, считал своим долгом узнать, чем занимается его трудолюбивый молодой друг, так как по вечерам они прогуливались, беседуя о математике. Поскольку Гаусс был не только скромным, но и сдержанным в рассказах о своих работах, Пфафф,
















АС-451.2022

Листт
















12

Изм.

Лист

докум.

Подпись

Дата





вероятно, не узнал от него столько, сколько мог бы узнать. Гаусс чрезвычайно восхищался профессором (он был тогда самым известным математиком Германии) не только ввиду его превосходных работ, но и ввиду его открытого простого характера.

Когда молодой гений, закончив Гёттингенский университет, стал беспокоиться о своем будущем, ему пришел на помощь герцог, который оплатил печатание его докторской диссертации (1799) и пожаловал стипендию, которая позволила ему продолжать научную деятельность.

Прежде чем осветить «Арифметические исследования», мы коснемся диссертации, за которую Гаусс был удостоен заочно степени доктора Хельмштедтским университетом: «Новое доказательство теоремы о том, что всякая целая рациональная алгебраическая функция одной переменной может быть разложена на действительные множители первой или второй степени».

В диссертации, явившейся вехой в алгебре, лишь одно неверно. Первые два слова в названии могут создать впечатление, что Гаусс просто добавил новое доказательство к уже известным другим. Ему следовало опустить слово

«новое». Его доказательство было первым (смысл этого будет разъяснен ниже). Некоторые математики до Гаусса публиковали то, что они считали доказательствами этой теоремы, обычно называемой основной теоремой алгебры, но никто из них не достиг цели3. С его бескомпромиссными требованиями к логической и математической строгости Гаусс настаивал именно на доказательстве и дал его впервые. Другая, эквивалентная формулировка теоремы состоит в том, что всякое алгебраическое уравнение с одним неизвестным имеет корень. Начинающие часто принимают это утверждение на веру, не имея даже отдаленного понятия, в чем его смысл.

Сомневаться в том, будто утверждение, что всякое алгебраическое уравнение имеет корень, что-либо значит, можно до тех пор, пока не сказано, какой именно корень имеет уравнение. Смутно мы чувствуем, что какое-то число будет удовлетворять уравнению, а не полфунта масла.

Гаусс превратил интуитивное представление в точное знание, доказав, что все корни любого алгебраического уравнения суть «числа» вида а + Ы, где а и b -- действительные числа (числа, которые соответствуют расстояниям -- положительным, отрицательным и нулевому, -- измеряемым от фиксированной точки О на данной прямой -- оси х декартовой геометрии), a i есть квадратный корень из -- 1. Эти новые «числа» называются комплексными.
















АС-451.2022

Листт
















13

Изм.

Лист

докум.

Подпись

Дата





При этом Гаусс одним из первых дал связное последовательное объяснение комплексных чисел и интерпретировал их как точки плоскости, что принято теперь в элементарных учебниках алгебры.

Гаусс считал теорему о том, что всякое алгебраическое уравнение имеет корень (в том смысле, который был сейчас разъяснен) столь важной, что дал четыре различных ее доказательства, причем последнее в 70-летнем возрасте. Сейчас иногда перемещают эту теорему из алгебры в анализ, ограничивая алгебру теми процессами, которые могут быть выполнены за конечное число шагов. Даже Гаусс предполагал, что график многочлена является непрерывной кривой и что если многочлен имеет нечетную степень, то график должен пересечь ось х по крайней мере один раз. Для любого новичка в алгебре это очевидно. Но теперь это не является очевидным и требует доказательства, а попытки провести доказательство снова приводят к трудностям, связанным с непрерывностью и бесконечностью. Даже корни такого простого уравнения, как х* -- 2 = 0, не могут быть вычислены точно за любое конечное число шагов. Сейчас мы переходим к «Арифметическим исследованиям».

Это был первый из шедевров Гаусса, и некоторые считают его величайшим. Он явился прощанием с чистой математикой как с предметом исключительного интереса. После его опубликования в 1801 г. (Гауссу тогда было 24 года) он расширил свою активность, включив в нее астрономию, геодезию и учение об электромагнетизме, как в математическом, так и в практическом аспекте. Но арифметика была его первой любовью, и он в дальнейшем всю жизнь сожалел, что не нашел времени написать второй том, который он замышлял молодым человеком. В книге 7 частей. Должна была быть и 8-я, но она опущена, чтобы снизить стоимость печатания.

Вводная фраза предисловия описывает общую направленность книги.

«Исследования, содержащиеся в этом труде, относятся к той части математики, которая имеет дело с целыми числами, а также с дробями; иррациональные числа постоянно исключаются».

В первых трех частях излагается теория сравнений и, в частности, дается исчерпывающее рассмотрение двучленного сравнения Хп = A (mod р), где п и А -- произвольные целые числа, ар -- простое число; неизвестным целым числом является х. Изящная арифметическая теория имеет много сходства с соответствующей алгебраической теорией двучленного уравнения хп = А, но в своих собственно арифметических частях несравненно богаче и труднее алгебраической; при этом алгебра не выявляет аналогий с арифметикой.
















АС-451.2022

Листт
















14

Изм.

Лист

докум.

Подпись

Дата





В четвертой части Гаусс развивает теорию квадратичных вычетов. Здесь находится первое опубликованное доказательство закона взаимности квадратичных вычетов. Доказательство является удивительным применением математической индукции и служит образцом изобретательной логики, повсеместной в книге.

В пятой части начинается теория двойничных квадратичных форм, рассматриваемая с арифметической точки зрения и вскоре сопровождаемая обсуждением тройничных квадратичных форм, которые оказываются необходимыми для завершения бинарной теории. Закон взаимности квадратичных вычетов играет фундаментальную роль в этих трудных свершениях. Для форм первого вида задача, названная общей, состоит в рассмотрении решения в целых числах х, у неопределенного уравнения

ax2 + 2bxy + cy2 = m,

где a, b, c, m -- данные целые числа. Для форм второго вида предметом исследования являются целочисленные решения х, у и z уравнения

ax2 + 2bxy + cy2 + 2dxz + 2eyz + fz2 = m,

где a, b, c, d, e, f, m -- данные целые числа. Выглядящим простым, однако на самом деле трудным вопросом в этой области является наложение необходимых и достаточных ограничений на а, с, т, которые обеспечивают существование целочисленного решения неопределенного уравнения

ax2 + cy2 + fz2 = m.

Шестая часть заключает применения предыдущей теории к различным специальным случаям, например к целочисленным решениям уравнения

mx2 + ny2 = A,

где m, n, A -- данные целые числа.

В седьмой, последней части, которую многие считают венцом сочинения, Гаусс использует предшествующие результаты, особенно теорию двучленных сравнений, к замечательному рассмотрению алгебраического уравнения хп = 1, где п -- любое заданное целое число, в котором арифметика, алгебра и геометрия сплетаются вместе в образец особого совершенства. Уравнение хп = 1 дает алгебраическую формулировку геометрической задачи построения правильного n-угольника или деления окружности на п равных частей (смотри любой повышенный учебник алгебры'или тригонометрии). Арифметическое сравнение х'г = 1 (mod р), где
















АС-451.2022

Листт
















15

Изм.

Лист

докум.

Подпись

Дата





тир -- данные целые числа, причем р -- простое, является нитью, пронизывающей алгебру и геометрию и придающей упомянутому образцу простое значение. Это безупречное произведение искусства доступно пониманию любого студента, владеющего школьной алгеброй. Тем не менее

«Арифметические исследования» не рекомендуются для новичков (сжатое изложение Гаусса было переработано позднейшими авторами и приобрело более удобочитаемую форму).

Многие части всего содержащегося в книге были сделаны иначе прежде -- Ферма, Эйлером, Лагранжем, Лежандром и другими, но Гаусс дал трактовку всего со своей точки зрения, добавил много своего и вывел изолированные результаты своих предшественников из своих общих формулировок и решений относящихся сюда задач.

«Арифметические исследования», -- сказал Гаусс на склоне лет, -- вошли в историю. И он был прав. Опубликованием этой книги высшей арифметике было придано новое направление, и теория чисел, которая в XVII и XVIII столетиях являлась разнообразным объединением не связанных между собой отдельных результатов, приобрела связность и поднялась до уровня математической науки наряду с алгеброй, анализом и геометрией. Само сочинение было названо «книгой за семью печатями». Его трудно читать даже знатокам, но содержащиеся в нем сокровища, а также (частично скрытые) сжатые синтетические доказательства теперь доступны всем, кто пожелает овладеть ими, главным образом в результате трудов ученика и друга Гаусса Петера Густава Лежен Дирихле (1805 -- 1859), который первым вскрыл «семь печатей».

Из-за классического совершенства стиля «Исследования» усваивались несколько медленно, и, когда, наконец, одаренные молодые люди начали, глубоко, изучать сочинение, его уже невозможно было достать, так как книготорговец обанкротился. Даже Эйзенштейн, любимый ученик Гаусса, так никогда и не имел своего экземпляра книги. Дирихле повезло больше. Его экземпляр сопровождал его во всех путешествиях, и он спал, положив его под подушку. Перед тем как ложиться, он осиливал какой-нибудь трудный параграф в надежде, часто исполнявшейся, что он пробудится ночью, чтобы обнаружить, что при повторном чтении все стало ясным. Именно Дирихле принадлежит изумительная теорема, упомянутая в связи с Ферма, о том, что всякая арифметическая прогрессия

a, a + b, a + 2b, a + 3b, a + 4b, ... ,
















АС-451.2022

Листт
















16

Изм.

Лист

докум.

Подпись

Дата
1   2   3   4   5   6   7


написать администратору сайта