Главная страница
Навигация по странице:

  • Реферат по теме

  • СОДЕРЖАНИЕ АСИНХРОННЫЙ ДВИГАТЕЛЬ. ОБЩИЕ СВЕДЕНИЯ

  • УСТРОЙСТВО АСИНХРОННОГО ДВИГАТЕЛЯ

  • ПРИНЦИП ДЕЙСТВИЯ

  • СПИСОК ИСТОЧНИКОВ

  • Обзор современного состояния асинхронных двигателей. Реферат_ СамосадкоРЕ_183-321. Реферат по теме Обзор современного состояния асинхронных двигателей


    Скачать 405.63 Kb.
    НазваниеРеферат по теме Обзор современного состояния асинхронных двигателей
    АнкорОбзор современного состояния асинхронных двигателей
    Дата05.12.2021
    Размер405.63 Kb.
    Формат файлаdocx
    Имя файлаРеферат_ СамосадкоРЕ_183-321 .docx
    ТипРеферат
    #292015

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

    РОССИЙСКОЙ ФЕДЕРАЦИИ

    МОСКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

    /МОСПОЛИТЕХ/

    ФАКУЛЬТЕТ УРБАНИСТИКИ И ГОРОДСКОГО ХОЗЯСТВА

    Кафедра «Электротехника»

    Реферат по теме:

    «Обзор современного состояния асинхронных двигателей»



    Выполнил:

    студент Самосадко Р.Е. группы 183-321

    Проверила преподаватель:

    Федоренко Елена Николаевна

    Москва 2020 г.

    СОДЕРЖАНИЕ


    АСИНХРОННЫЙ ДВИГАТЕЛЬ. ОБЩИЕ СВЕДЕНИЯ

    Асинхронные машины относятся к классу электромеханических преобразователей, т.е. преобразователей электрической энергии в механическую или механической в электрическую. В первом случае они называются двигателями, а во втором – генераторами.



    Все электрические машины обладают свойством обратимости и могут осуществлять преобразование энергии в обоих направлениях, поэтому при изучении процессов в машинах пользуются понятиями двигательного и генераторного режимов. Однако при разработке и изготовлении машины оптимизируются для условий работы в одном из режимов и используются в соответствии с назначением. Асинхронные машины не являются исключением из этого правила, но асинхронные генераторы значительно уступают синхронным по многим параметрам и редко используются на практике, в то время как асинхронные двигатели являются самыми распространёнными электромеханическими преобразователями. Суммарная мощность асинхронных двигателей составляет более 90% общей мощности всех существующих двигателей, поэтому в данном курсе мы ограничимся рассмотрением только этого типа машин. Асинхронные двигатели относятся к бесколлекторным машинам переменного тока или машинам с вращающимся магнитным полем. Название асинхронные (несинхронные) объясняется тем, что в статическом режиме работы скорость вращения ротора (вращающейся части) двигателя отличается от скорости вращения магнитного поля, т.е. ротор и поле вращаются несинхронно.

    УСТРОЙСТВО АСИНХРОННОГО ДВИГАТЕЛЯ

    Устройство асинхронного двигателя показано на рисунке 1.

    Основные его части статор и ротор. Статор – это неподвижная часть мотора (1), в котором закреплены между собой все части электродвигателя и с помощью которого двигатель крепится на основании.

    Подшипники качения (2) размещаются в подшипниковых щитах (3), которые обеспечивают соосность между статором и ротором. В корпусе (1) размещён магнитный сердечник (7), собранный из статорных пластин толщиной 0,3 – 0,5 мм. Эти пластины изолированы друг от друга. В желобах статора расположена трёхфазная обмотка (8), с помощью которой получаем вращающееся магнитное поле. Ротор (9), закреплённый на валу (10), вращается на подшипниках. На свободном конце вала находится вентилятор (4), который при вращении мотора подаёт воздух для охлаждения. Вентилятор закрыт крышкой для защиты от касания. Для электрического подсоединения мотора на корпусе находится клеммная коробка (6).



    ПРИНЦИП ДЕЙСТВИЯ

    Рассмотрение принципа действия асинхронного двигателя можно разделить на два этапа: первый этап – создание обмоткой статора вращающегося магнитного поля, второй этап – взаимодействие вращающегося магнитного поля с обмоткой ротора. Магнитное поле асинхронного двигателя Симметричная трехфазная обмотка статора подключена к трехфазному источнику. При этом фазные токи симметричны, т.е. одинаковы по величине и отличаются по фазе на 1/3 часть периода. Временная диаграмма фазных токов показана на рисунке 2. Обмотка статора с симметричным трехфазным током создает магнитное поле, распределенное в магнитной цепи асинхронного двигателя. Для анализа характера магнитного поля рассмотрим распределение его силовых линий в разные моменты времени, обозначенные на рис. t1, t2, t3, t4 через равные промежутки ∆t=T/3.



    Рис. 2 - Временная диаграмма фазных токов обмотки статора

    Распределение силовых линий магнитного поля определяется направлением токов в проводниках обмотки статора, расположенных в его пазах. Каждая фаза трехфазной обмотки представлена одним витком, стороны которого находятся в диаметрально расположенных пазах. Три фазы смещены относительно друг друга по окружности на 120°. Проводники, соответствующие началам фаз, обозначены символами А, В, С, концы фаз – X, Y, Z. На рисунке 3 показаны силовые линии магнитного поля для трех моментов времени.



    Рис. 3 - Силовые линии магнитного поля асинхронного двигателя в разные моменты времени

    Направления токов в проводниках определяются их значениями в соответствии с временной диаграммой на рисунке 2. В частности, в момент времени t1 ток фазы А положителен (iA>0). На рисунке 3 положительному значению тока соответствует направление за плоскость рисунка, которое обозначено в начале фазы А знаком «+». В конце этой фазы X ток отрицателен, т.е. имеет обратное направление, которое обозначено знаком «•». Аналогично обозначены токи двух других фаз, которые в соответствии с временной диаграммой в этот момент времени имеют отрицательные значения (iB0, iC0. Как видно на рисунке 3, при питании обмотки статора трехфазным током создается двухполюсное магнитное поле. С изменением фазных токов это магнитное поле поворачивается в пространстве. При этом через равные промежутки времени (∆t=T/3) магнитное поле поворачивается в пространстве на равный угол (1/3 часть окружности). В момент времени t4 распределение токов в обмотке и магнитное поле повторяет момент t1, Таким образом, симметричная трехфазная обмотка статора асинхронного двигателя, потребляющая от трехфазного источника симметричные фазные токи, создает равномерно вращающееся в пространстве магнитное поле.

    Взаимодействие вращающегося магнитного поля с обмоткой ротора Электромагнитный вращающий момент асинхронного двигателя создается при взаимодействии вращающегося магнитного поля с обмоткой ротора. Рисунок 4 иллюстрирует процессы, происходящие при этом взаимодействии.



    Рис. 4. Взаимодействие вращающегося магнитного поля с обмоткой ротора

    Здесь показаны стержни короткозамкнутой обмотки ротора. Вращающееся магнитное поле, связанное с ротором, представлено его силовыми линиями с индукцией В, направленными сверху вниз. Направление вращения магнитного поля – по часовой стрелке с частотой вращения n0. При вращении магнитного поля его силовые линии пересекают проводники обмотки ротора. При этом проявляется индукционное действие магнитного поля. Согласно закона электромагнитной индукции в проводнике, движущемся в магнитном поле (относительно магнитного поля), индуцируется ЭДС e Величина этой ЭДС определяется интенсивностью магнитного поля (индукцией В) и скоростью движения проводника относительно магнитного поля v: e2 = Bvl 2, (где l – длина проводников обмотки ротора). Направление ЭДС e2 в проводнике определяется по правилу правой руки. При этом необходимо иметь в виду, что вектор скорости определяется направлением движения проводника относительно магнитного поля. Например, на рисунке 3 магнитное поле вращается по часовой стрелке. При этом относительно верхних проводников силовые линии движутся вправо. Это эквивалентно направлению движения проводника относительно магнитного поля влево, т.е. вектор скорости относительного движения проводника следует направить влево. С учетом этого направление ЭДС индукции в верхних проводниках обмотки ротора – из-за плоскости рисунка, а в нижних проводниках – за плоскость рисунка. Эти направления обозначены условными знаками «+» и «•». В короткозамкнутой обмотке ротора все стержни включены в замкнутую электрическую цепь посредством коротко- замыкающих колец. В каждом стержне под действием ЭДС е2 возникает ток ротора (вторичный ток) i2 того же направления, что и ЭДС. Величина этого тока определяется величиной ЭДС е2 и полным сопротивлением обмотки ротора Z2.i2= e2/Z2. При возникновении тока в обмотке ротора проявляется силовое действие магнитного поля, т.е. на проводники с током, находящиеся в магнитном поле, действует электромагнитная сила Fэм. Величина этой силы определяется интенсивностью магнитного поля (индукцией В) и величиной тока i2: Fэм= Bi(2)/l.

    Направление действия электромагнитной силы определяется в соответствии с правилом левой руки. При направлениях силовых линий и токов в обмотке ротора, показанных на рисунке 4, направление электромагнитной силы, действующей на верхние проводники, - вправо, а на нижние – влево. Силы, действующие на все проводники обмотки ротора, складываясь, создают электромагнитный вращающий момент Мэм, направленный по часовой стрелке.



    где D2 – диаметр ротора; N2 – число проводников обмотки ротора.

    Под действием этого вращающего момента ротор вращается с частотой вращения n в том же направлении, что и магнитное поле. При этом двигатель, вращая приводной механизм, совершает механическую работу. Для осуществления реверса (изменения направления вращения) необходимо поменять направление вращения магнитного поля. Для этого достаточно переключить обмотку статора так, чтобы изменить последовательность чередования фаз на противоположную.

    Таким образом, асинхронный двигатель, обмотка статора которого подключена к трехфазному источнику электроэнергии, создает электромагнитный вращающий момент и совершает механическую работу. Т.е. асинхронный двигатель преобразует электрическую энергию в механическую.

    Необходимым условием создания электромагнитного момента является неравенство частоты вращения ротора n и магнитного поля n0. Если ротор вращается с такой же частотой вращения, как и магнитное поле (n=n0), то проводники обмотки ротора относительно магнитного поля неподвижны, т.е. скорость относительного движения v=0. Тогда ЭДС е2 в обмотке ротора равна нулю, и тока в обмотке нет (i2=0), электромагнитная сила не создается (Fэм=0) и электромагнитный вращающий момент равен нулю. Т.е. механическая энергия не создается. Такой режим работы асинхронного двигателя называется холостой ход. Частота вращения ротора, равная частоте вращения магнитного поля, называется синхронной.

    ЗАКЛЮЧЕНИЕ

    В заключении стоит сказать об основных достоинствах и недостатках асинхронного двигателя.



    Все вышеперечисленные достоинства являются следствием отсутствия механических коммутаторов в цепи ротора и привели к тому, что большинство электродвигателей, используемых в промышленности — это асинхронные машины, в исполнении АДКЗ.

    Причиной широкого распространения асинхронных двигателей является их предельная простота, надёжность и экономичность. Можно сказать, что асинхронные двигатели совместно с синхронными генераторами и трёхфазными линиями передачи и распределения электрической энергии образуют систему передачи механической энергии на расстояние. В последнее время в связи с появлением полупроводниковых преобразователей частоты для питания асинхронных двигателей область их применения существенно расширилась. Они стали широко применяться в высокоточных приборных приводах там, где ранее использовались в основном двигатели постоянного тока.

    СПИСОК ИСТОЧНИКОВ

    1. Учебник и практикум для СПО: Электротехника, электроника и схемотехника. Миленина С.А., под ред. Н.К. Милениной;

    2. Учебное пособие: Электротехника Асинхронный двигатель, Проскуряков В.С., Соболев С.В.;

    3. Учебное пособие: Общая электротехника, Усольцев А.А.;

    4. Учебник: Электрические машины. Вольдек А.И.;

    5. Учебник: Выбор и применение асинхронных двигателей. Кравчик А.Э.


    написать администратору сайта