Главная страница

Математика. Реферат Производная и ее приложения ученик 11А класса Новиков А. Проверила Шекера Г. В. г. Хабаровск


Скачать 1.6 Mb.
НазваниеРеферат Производная и ее приложения ученик 11А класса Новиков А. Проверила Шекера Г. В. г. Хабаровск
АнкорМатематика
Дата12.06.2022
Размер1.6 Mb.
Формат файлаdoc
Имя файлаprorobot.ru-11-0193.doc
ТипРеферат
#586719
страница3 из 12
1   2   3   4   5   6   7   8   9   ...   12

4. Правила дифференцирования


(C)’= 0 С=const







(cos x)'=-sin x



(sin x)'=cos x



(tg x)'=

х)'=аx ln a

(ctg x)'=-

х)'=ex











Производная степенно-показательной функции

, где .

.

Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам диф­фе­рен­цирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

(1)

Отношение называется логарифмической производной функции . Из формулы (1) получаем

. Или

Формула (2) дает простой способ нахождения производной функции .

5. Производные высших порядков


  Ясно, что производная функции y =f (x) есть также функция от x:

  Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением можем написать

  Очень удобно пользоваться также обозначением , указывающим, что функция y=f(x) была продифференцирована по x два раза.
  Производная второй производной, т.е. функции y''=f '' (x) , называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами .

  Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами

Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции.

Например:

1) ; ; ; ...;

; .

Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие – переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной.

Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.
1   2   3   4   5   6   7   8   9   ...   12


написать администратору сайта