Главная страница

Математика. Реферат Производная и ее приложения ученик 11А класса Новиков А. Проверила Шекера Г. В. г. Хабаровск


Скачать 1.6 Mb.
НазваниеРеферат Производная и ее приложения ученик 11А класса Новиков А. Проверила Шекера Г. В. г. Хабаровск
АнкорМатематика
Дата12.06.2022
Размер1.6 Mb.
Формат файлаdoc
Имя файлаprorobot.ru-11-0193.doc
ТипРеферат
#586719
страница7 из 12
1   2   3   4   5   6   7   8   9   ...   12

7.2. Применение производной в экономической теории.


Проанализировав экономический смысл производной, нетрудно заметить, что многие, в том числе базовых законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем.

Вначале рассмотрим экономическую интерпретацию теоремы: если дифференцируемая на промежутке X функция y= f(x) достигает наибольшего или наименьшего значения во внутренней точке x0 этого промежутка, то производная функции в этой точке равна нулю, то есть f’(x0) = 0.

Один из базовых законов теории производства звучит так: "Оптимальный для производителя уровень выпуска товара определяется равенством предельных издержек и предельного дохода".

То есть уровень выпуска Qo является оптимальным для производителя, если MC(Qo)=MR(Qo), где MC - предельные издержки, а MR - предельный доход.

Обозначим функцию прибыли за П(Q). Тогда П(Q) = R(Q) — C(Q), где R – прибыль, а C – общие издержки производства.

Очевидно, что оптимальным уровнем производства является тот, при котором прибыль максимальна, то есть такое значение выпуска Qo, при котором функция П(Q) имеет экстремум (максимум). По теореме Ферма в этой точке П’(Q) = 0. Но П’(Q)=R’(Q) - C’(Q), поэтому R’(Qo) = C’(Qo), откуда следует, что MR(Qo) = MC(Qo).

Другое важное понятие теории производства - это уровень наиболее экономичного производства, при котором средние издержки по производству товара минимальны. Соответствующий экономический закон гласит: “оптимальный объем производства определяется равенством средних и предельных издержек”.

Получим это условие как следствие сформулированной выше теоремы. Средние издержки AC(Q) определяются как , т.е. издержки по производству всего товара, деленные на произведенное его количество. Минимум этой величины достигается в критической точке функции y=AC(Q), т.е. при условии , откуда TC’(Q)Q—TC(Q) = 0 или , т.е. MC(Q)=AC(Q).

Понятие выпуклости функции также находит свою интерпретацию в экономической теории.

Один из наиболее знаменитых экономических законов - закон убывающей доходности - звучит следующим образом: "с увеличением производства дополнительная продукция, полученная на каждую новую единицу ресурса (трудового, технологического и т.д.), с некоторого момента убывает".

Иными словами, величина , где y - приращение выпуска продукции, а x - приращение ресурса, уменьшается при увеличении x. Таким образом, закон убывающей доходности формулируется так: функция y= f(x), выражающая зависимость выпуска продукции от вложенного ресурса, является функцией, выпуклой вверх.

Другим базисным понятием экономической теории является функция полезности U= U(x), где х - товар, а U – полезность (utility). Эта величина очень субъективная для каждого отдельного потребителя, но достаточно объективная для общества в целом. Закон убывающей полезности звучит следующим образом: с ростом количества товара, дополнительная полезность от каждой новой его единицы с некоторого момента убывает. Очевидно, этот закон можно переформулировать так: функция полезности является функцией, выпуклой вверх. В такой постановке закон убывающей полезности служит отправной точкой для математического исследования теории спроса и предложения.

7.3. Использование производной для решения задач по экономической теории.


Задача 1.

Цементный завод производит Х т. цемента в день. По договору он должен ежедневно поставлять строительной фирме не менее 20 т. цемента. Производственные мощности завода таковы, что выпуск цемента не может превышать 90 т. в день.

Определить, при каком объеме производства удельные затраты будут наибольшими (наименьшими), если функция затрат имеет вид:

К=-х3+98х2+200х. Удельные затраты составят К/х=-х2+98х+200

Наша задача сводится к отысканию наибольшего и наименьшего значения функции У= -х2+98х+200. На промежутке [20;90].

Вывод: x=49, критическая точка функции. Вычисляем значение функции на концах промежутках и в критической точке.

f(20)=1760 f(49)=2601 f(90)=320.

Таким образом, при выпуске 49 тонн цемента в день удельные издержки максимальны, это экономически не выгодно, а при выпуске 90 тонн в день минимально, следовательно можно посоветовать работать заводу на предельной мощности и находить возможности усовершенствовать технологию, так как дальше будет действовать закон убывающей доходности. И без реконструкции нельзя будет увеличить выпуск продукции.
1   2   3   4   5   6   7   8   9   ...   12


написать администратору сайта