Статистика интернет. Решение Построим дискретный вариационный ряд. Для этого отсортируем ряд по возрастанию и подсчитаем количество повторения для каждого элемента ряда
Скачать 1.16 Mb.
|
По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=8 находим tкрит: tкрит (n-m-1;α/2) = (8;0.025) = 2.306 где m = 1 - количество объясняющих переменных. Если |tнабл| > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается). Поскольку |tнабл| > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим Отметим значения на числовой оси.
В парной линейной регрессии t2r = t2b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии. 2.2. Интервальная оценка для коэффициента корреляции (доверительный интервал). Доверительный интервал для коэффициента корреляции. r(0.642;1) 1.2. Уравнение регрессии (оценка уравнения регрессии). Линейное уравнение регрессии имеет вид y = 0.222 x -33.269 Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент регрессии b = 0.222 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 0.222. Коэффициент a = -33.269 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями. Но если х=0 находится далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо. Подставив в уравнение регрессии соответствующие значения х, можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения. Связь между у и х определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая. 1.3. Коэффициент эластичности. Коэффициент эластичности находится по формуле: |