Ацюковский В.А. - Популярная эфиродинамика. Российская академия естественных наук
Скачать 14.88 Mb.
|
Каким же образом и по каким причинам эфиродинамические знания, которыми располагали древние ученые, оказались утраченными? Обычно исследователи истории естествознания полагают, что по мере своего развития человечество накапливает знания. Это накопление связано, в частности, с выявлением законов природы и использованием их для нужд общества. Этот процесс несомненен. Однако в нем следует выделить этап закрепления знаний, связанный с их освоением общественным производст- вом. Только те знания имеют шанс сохраниться, которые нужны для данного способа производства, и при этом только тот период, пока этот существуют соответствующие технологии. Если же уже имеющиеся знания не освоены как необходимый элемент технологии, то они остаются незамеченными, утрачива- ются, и в будущем, когда в них возникает необходимость, переоткрываются. А если соответствующая технология на определенном этапе развития оказывается вообще не нужной и она утрачивается, то вместе с ней утрачиваются и относящиеся к ней знания. Не навсегда, конечно, потому что, если вдруг возникнет необходимость, то они могут и переоткрыться. Примеров много. Это алхимия и астрология, это всевозможные магии, разнообразные медицинские рецепты и эликсиры. Но есть и более простой пример. В древнем Риме был изобретен способ ковки лошадей. В России в каждом селе была кузница. Где они сейчас? Этот способ практически утрачен. И если нужно будет его восстановить, то почти все нужно начинать заново. Таким образом, следует отметить, что утрата знаний со време- нем есть такой же фундаментальный процесс, сопровождающий развитие человечества, как и их накопление. Автор выдвигает предположение, что эфиродинамика, то есть наука о природе и свойствах эфира – мировой среды и о структуре вещества и полей на его основе была широко известна в древнейшем мире, и отдельные ее фрагменты и отголоски дошли до нас в виде так называемых эзотерических знаний. 26 По мнению автора, такие учения, как чарвака (древняя Индия), древнекитайский даосизм, а также некоторые другие несут в себе остатки еще более древних материалистических знаний типа эфиродинамики. Сопоставление различных учений друг с другом, верований, религий говорит о том, что все они в глубочайшей древности имели общие корни и эти корни были материалистичны и весьма основательны. В основе мировых религий, по мнению автора, лежит серьезная материалистическая основа, например, представление о единстве Вселенной. Есть основания полагать, что ряд древних учений, которые сегодня легко относят к суевериям, мистицизму и шарлатанству, такие, как алхимия, астрология, различного вида магии, в свое время содержали в себе реальные и весьма полезные знания. В качестве примера полезности такого направления можно привести работы советского академика А.Л.Чижевского, фактически частично восстановившего астрологию. В своих работах на основе большого статистического материала он доказал взаимозависимость процессов на Солнце и на Земле. А известно, что процессы на Солнце слишком хорошо коррелируются с положением больших планет – Юпитера, Сатурна, Урана и Нептуна. Автор полагает, что те остатки древних учений, которые еще сохранились, должны быть тщательно изучены и переосмыслены в целях заимствования из них полезных сведений и проведения исследований в новых, весьма неожиданных направлениях. А в ХХ столетии официальная наука отказалась от представлений об эфире, потому что этого потребовала теория относительности Эйнштейна. Однако вскоре эксперименты показали, что пустота – вакуум почему-то обладает физическими свойствами – диэлектрической проницаемостью, энергией, способностью рождать микрочастицы и даже поляризацией. И тогда был изобретен термин «физический вакуум», т.е. пустота (вакуум), но физический, т. е. не пустота (не вакуум). В чем отличие терминов «физический вакуум» и «эфир»? 27 «Физический вакуум» не имеет длиной предыстории. Этот термин был введен в 1928 г. английским физиком П.Дираком. И хотя этот термин узаконен в современной науке, он практически ничего не объясняет, не дает ответа на вопрос, почему он обладает всеми известными ныне свойствами. «Физический вакуум» не имеет никакой структуры, он не устроен никак, но почему-то обладает физическими свойствами. Понятие же «эфир» существует тысячелетия. Эфир – это конкретная среда, имеющая устройство. У эфира есть части, элементы эфира. Они как-то движутся, эти движения можно понять, то есть свести их к уже освоенным и понятным представлениям, и на этой основе можно понять все свойства, которыми обладает «пустое» пространство, которое на самом деле заполнено эфиром. Однако для того чтобы разобраться в структуре эфира, нужно принципиально изменить всю методологию современной физической теории. Надо не изобретать природу, а понять ее. И это для многих оказалось гораздо труднее, чем свободное изобретательство. Эти «многие» сделали все, от них зависящее, чтобы ничто не поколебало их спокойствие. Но сегодня это уже невозможно, потому что прикладные задачи стучатся в дверь, требуют решения, а это можно сделать, только понимая саму суть, механизм физических явлений. Для этого придется возвратиться к представлениям об эфире, ибо он является строительным материалом для частиц вещества, и его движения определяют все виды взаимодействий. Другого пути для физической теории нет. Эфир – это физическое тело конкретной структуры. Наша задача – понять его устройство и все его свойства, а не только те, с которыми физики столкнулись в своих экспериментах весьма неожиданно для себя, когда природа их, как говорят в народе, «ткнула носом». И поэтому термин «эфир» не может быть подменен термином «физический вакуум», так как это разные понятия, разное содержание и разное отношение к методологии дальнейшего развития физики. 28 Понятие эфира никогда не было «дискредитировано», как утверждают некоторые теоретики. И в настоящее время есть все необходимое для выявления свойств эфира и его роли в устройстве нашего мира. Это неправедно попранное направление физики должно быть восстановлено и развито. Вот почему к проблеме эфира, его существованию и роли в природе необходимо вернуться. 4. Так что это такое – эфир? Единый эфир пронизывает всю Вселенную Древнекитайский даосизм. Прежде чем ответить на этот вопрос, нужно определить методологию поиска свойств эфира. И здесь решающее значение приобретают представления об общих физических инвариантах. Общие физические инварианты – это такие физические категории, которые не изменяются ни при каких преобразованиях форм материи и ни при каких физических процессах. То есть они инвариантны по отношению и к преобразованиям форм материи, и к конкретным физическим явлениям. О том, к чему можно прийти, не продумав тщательно проблему инвариантов, нам де- монстрирует специальная теория относительности А.Эйнштейна. В СТО, как известно, в качестве исходной величины, неизменной при любых обстоятельствах, то есть общим физическим (а скорее, математическим) инвариантом выступает четырехмерный интервал ds: ds² = dх² + dy² + dz² – с ²d t² = const, где dx, dy, dz, – приращения координат пространства, dt – приращение времени, а с – скорость света 29 После того как произведена замена систем координат, получаются преобразования Лоренца, из которых затем вытека- ют зависимости времени, длины, массы движущейся частицы от скорости ее движения. Получается также, что скорость света есть предельная величина для cкорости любых объектов, а также для распространения всех видов полей взаимодействий. 30 Если бы за исходную базу был взят другой инвариант, то и результат получился бы совершенно иной. Поэтому обоснованность инвариантов имеет исключительно важное значение для любой теории. В принципе, для выбора упомянутого четырехмерного интервала в качестве всеобщего физического инварианта, то есть распространения его свойств на все без исключения физические явления нет никакого основания, так как одной из составляющих в интервал входит скорость света. А скорость света, как известно, есть скорость распространения электромаг- нитного поля в пустоте, и только. А вовсе не всех видов полей. Например, к гравитации свет не имеет никакого отношения, поскольку гравитация есть иное, нежели электромагнетизм, физическое явление. Константы гравитации отличаются от констант электро- магнетизма на 36 (!) порядков. Поэтому при создании общей теории относительности («теории гравитации», как ее называют) Эйнштейну надо было бы использовать что-нибудь другое, а не скорость света, применение которой в теории гравитации, к которой свет не может иметь отношения, наводит на размышления, вовсе не научные. Скорость распространения гравитационного возмущения в свое время определил П.С.Лаплас. В своем «Изложении системы мира» он рассчитал, что эта скорость не менее, чем в 50 миллионов раз (!), выше скорости света. А значение скорости света во времена Лапласа уже знали хорошо. По нашим же данным скорость распространения гравитации превышает скорость света на 15 порядков. Так что принятие за всеобщий физический инвариант интервала, в котором использовано частное, а не всеобщее свойство – скорость частного, а не всеобщего явления – света, неправомерно. Должно быть что-то другое. Этим «чем-то другим» могут быть только такие категории, которые являются всеобщими для всех без исключения физических явлений, то есть для всей реальности нашего 31 физического мира. Поэтому их выдумывать не нужно. Достаточно посмотреть вокруг, чтобы их увидеть и обобщить. И тогда становится ясно, что такими категориями являются материя, пространство и время и их совокупность – движение. И в самом деле, в нашей реальной жизни мы не можем назвать ни одного явления, ни одного физического процесса, который происходил бы без участия материи, или вне пространства, или вне времени. Всякий процесс, всякое явление происходят только с участием материи, только в пространстве и только во времени, а это и означает движение. В мире нет ничего, кроме движущейся материи! Всего четыре категории, пятой не существует, причем четвертая категория есть комбинация первых трех, которые независимы. Следовательно, эти четыре категории и являются всеобщими. А все остальное носит частный, а не общий характер. Являясь всеобщими, материя, пространство, время и движение тем самым являются и первичными, то есть исходными, аргументальными. Они не могут быть функциями чего бы то ни было, так как иначе должны существовать некие более первичные категории, чем перечисленные, а в реальности этого нет. А фантазии в расчет не принимаются. В силу всеобщности и аргументальности перечисленные четыре категории являются тем самым и линейными. А это значит, что наше реальное пространство линейно, то есть евклидово, и никакого риманова пространства или пространства Минковского или чьего-нибудь еще в природе не существует. Так же не может существовать многомерных пространств, то есть они могут существовать, но не в природе, а в умах математиков. А это не одно и то же. Время линейно и однонаправлено, и не может быть никакого «замедления» времени. Никогда и ни при каких обстоятельствах. Поэтому, увы! Ни «парадоксов близнецов, ни путешествия во времени быть не может. Хотя это и скучно, как сказал автору один из журналистов. Возможно, возможно… 32 Невозможность функциональных искажений для инвариантов означает, что у них никогда не было начала и не будет конца, ибо это есть перерыв функции, а у аргументов таких перерывов быть не может. Значит, эти четыре категории никто никогда не создавал, и никаких «Больших взрывов» или «сингулярностей» в реальной природе никогда не было и, можно надеяться, что не будет. А будет многократное повторение одного и того же, и тут уж ничего не поделаешь. И еще все это значит, что в этих аргументальных категориях – материи, пространстве, времени и движении, не может быть никаких предпочтительных масштабов, ибо аргументы дробятся беспредельно. А отсюда непосредственно вытекает, что и никаких «особых» физических законов в микромире тоже нет, в нем действуют те же физические законы, что и в макромире. И что для анализа процессов микромира можно и нужно широко использовать аналогии макромира, то есть то, что в свое время рекомендовал член Лондонского королевского общества и выдающийся физик конца ХIХ – начала ХХ века лорд Рэлей. Правда, это было до Эйнштейна. Конечно, конкретные коэффициенты могут значительно отличаться, раз масштабы другие. Но в принципе, все это одно и то же. Колоссальные возможности открываются при таком подходе для анализа сущности явлений микромира, и это вовсе не скучно! Отсюда же вытекает и еще одно немаловажное обстоятельство. Раз во времени нет никаких предпочтительных масштабов и все временные отрезки эквивалентны друг другу, то во все времена наша Вселенная имела в среднем один и тот же вид. Желаете знать, что было в прошлом или будет в будущем? Изучайте настоящее. Вселенная стационарна и динамична. В ней одновременно существуют все виды процессов, их надо только увидеть и понять взаимосвязь. Вот ведь к каким выводам можно придти, если грамотно подойти к определению всеобщих физических инвариантов! 33 Следующим важным вопросом методологии является пробле- ма взаимоотношения причинности и случайности в явлениях. Как правило, в макроявлениях видно, к каким следствиям приводят те или иные причины. Когда же не все учтено, а все учесть невозможно в принципе, то и результаты частично случайны. Таким образом, случайность выступает как результат неполного знания. Однако, если в микромире действуют те же законы, что и в макромире, то и здесь случайность должна выступать не как принцип устройства природы, как полагают некоторые теоретики, а как результат нашего неполного знания. Каждое явление есть следствие движения составляющих его элементов. Каждое материальное образование имеет структуру, то есть состоит из каких-то частей, и эти части связаны и взаимодействуют друг с другом. А физики до сих пор считают, что микрочастицы имеют массу, заряд, магнитный момент, но не имеют ни размеров, ни структуры. Это почему же? Должны иметь! Как уже было показано, основной линией развития естествознания было углубление по уровням организации материи. От Вселенной в целом к субстанциям, далее – к веществам, далее – к молекулам, далее – к атомам, далее – к «элементарным частицам» вещества. То есть каждый раз переход от некоторого «целого» к его частям. Материя беспредельно дробима: это означает, что любое материальное образование должно иметь части, а значит и размеры, и структуру. А как определялись части? Для этого анализировалось поведение «целых» образований при их взаимодействиях между собой. И в результате анализа определялись «части». Например, при анализе взаимодействий молекул (конец ХVIII – начало ХIХ столетий) Лавуазье пришел к выводу о том, что у разных молекул есть общие части, которые он назвал «элементами». Изучив взаимодействие ряда молекул, Лавуазье пришел к выводу о том, что молекула есть комбинация этих «элементов», которые позже Дальтон позже назвал «атомами», заимствовав это название у Демокрита. Введение понятия атомов позволило 34 выйти из кризиса естествознания того периода. Молекулы приобрели и размеры, и структуру, а химия получила мощный толчок к развитию. То же произошло и при анализе атомов. Сам факт существования различных атомов, ядра которых несли в себе основную массу, говорил о том, что именно ядра определяют основные свойства атомов и что эти ядра имеют одинаковый строительный материал и отличаются различным составом этого материала. Введение представлений об «элементарных частицах» позволило определить составы ядер и атомов в целом. И именно это не только подкрепило уже существовавшую химию, но и дало толчок к развитию атомной энергетики. Поэтому и сейчас, когда «элементарных частиц» вещества стало много (разные источники называют разное число частиц микромира – от 200 до 2000), для получения данных об их структурах нужно проследить за их взаимодействиями и выявить наиболее общие черты этих взаимодействий. Из того факта, что все виды частиц могут преобразовыва- ться друг в друга, вытекает, что все они имеют одни и те же части – «кирпичики». А из того факта, что такие преобразова- ния следуют только при их взаимном соударении, то есть в результате простого механического удара (а не в результате, скажем, магнитного или электрического воздействия), вытекает, что части частиц перемещаются в пространстве и тоже соударяются: ведь «элементарные частицы» вещества соударяются какими-то своими частями, а не всем телом сразу. Таким образом, в результате анализа поведения микрочастиц выяснилось, что их части, «кирпичики», должны перемещаться в пространстве и соударяться. С другой стороны, эти «кирпичики» должны какими-то силами удерживаться в составе микрочастиц. Вполне допустимо предположение о том, что их удерживают такие же «кирпичики», которые находятся в окружающем микрочастицы пространстве. Это тем более вероятно, что известен экспериментальный факт «рождения» микрочастиц «физическим вакуумом», то есть пространством, не 35 заполненным веществом. Это говорит о том, что исходный материал – «кирпичики» уже содержатся в вакууме. И следовательно, в вакууме содержится среда как совокупность этих «кирпичиков». А теперь осталось ответить на вопрос, что же это за среда, заполняющая мировое пространство и состоящая из тех же самых «кирпичиков», из которых состоят и все «элементарные частицы» вещества. Откровенно говоря, выбор не очень велик: ведь надо воспользоваться какой-то аналогией макромира. А нам известны всего лишь три типа сред в макромире: это твердое тело, жидкость и газ. Из указанных трех тел на роль мировой среды подходит лишь газ. Твердое тело не годится, так как трудно объяснить, каким образом сквозь него могут протискиваться планеты, практически не изменяя скорости. Жидкое тело тоже мало подходит, так как жидкость, обладая поверхностным натяжением, должна в невесомости собираться в шары. А это значит, что тогда в пространстве будут наблюдаться неравномерности при прохождении света, но этого не наблюдается. И только газ удовлетворяет всем требованиям, предъявляемым к мировой среде: он естественным образом заполняет все пространство, имеет малую вязкость и способен в широких пределах изменять свою плотность, что немаловажно при образовании частиц вещества. Приходится остановиться на газе. Тогда получается, что этот газ в виде своих молекул и содержит те самые «кирпичики», из которых состоят микрочастицы вещества. Но тогда надо использовать все закономерности обычной газовой механики для обычного реального, т. е. вязкого и сжимаемого газа, чтобы разобраться в устройстве микрочастиц, а также в устройстве атомов, молекул и всей Вселенной в целом. А поскольку газовая механика в настоящее время уже неплохо разработана, получается, что мы имеем готовый модельный и математический аппарат для выполнения этой задачи. 36 Качественное определение основных свойств эфира Свойства реального мира Свойства эфира Макромир Инварианты всех физических Инварианты эфира – материя, явлений – материя, пространство, пространство, время, движение время, движение Изотропность характеристик вещества и полей в пространстве Естественное заполнение эфиром пространства без пустот и дислокаций Малое сопротивление движению тел Малые плотность и вязкость Большие скорости распростране- ния взаимодействий Большая упругость Микромир Взаимное превращение всех Возможность образования элементарных частиц вещества различных структур Условие взаимных превращений устойчивых «элементарных частиц» – взаимные соударения с сохранением механических параметров движения – энергии и импульса Элементы эфира должны обеспечивать возможность взаимных соударений с сохранением механических параметров движения – энергии и импульса Удержание материи в пределах устойчивых «элементарных частиц» вещества Наличие форм движения, обеспечивающих удержание эфира в составе материальных образований Различие удельных плотностей «элементарных частиц» вещества Сжимаемость эфира в широких пределах Вывод : эфир – газоподобное тело со свойствами реального газа И эта среда, имеющая свойства газа, должна быть названа эфиром, как это и было всегда, а элемент среды – áмером, как его называл Демокрит. 37 Для расчета основных параметров эфира автором было использовано два исходных момента – энергия электрического поля протона и центробежные силы, стремящиеся разбросать тело протона при его вращении, но которые разбросать его не могут, потому что это не позволяет сделать внешнее давление эфира. Первое позволило найти плотность эфира в околоземном пространстве, второе – его энергосодержание и давление. А затем, применив формулы обычной газовой механики, оказалось возможным рассчитать все основные параметры эфира как обычного газа. Результаты расчетов приведены в таблице, данной в приложении. Как видно из таблицы, плотность эфира на 11 порядков меньше, чем плотность воздуха при обычном давлении и обычной температуре. Зато его энергосодержание и давление весьма велики. Получается, что один кубический метр свободного эфира содержит в себе энергию почти миллиарда миллиардов мегатонных атомных бомб. Желающие детальнее ознакомиться с расчетами параметров эфира могут это сделать по книге автора «Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире» 2-е издание (М., Энергоатомиздат, 2003, 584 с.). 5. Виды движения эфира Первоначала вещей в пустоте необъятной мятутся Тит Лукреций Кар. О природе вещей. Устройство вещества – это устройство его молекул и атомов, атомных ядер и электронных оболочек. Чтобы разобраться в сложных структурах, всегда приходится начинать с простейших. Если рассматривать отдельный амер, то у него по отношению к другим амерам может существовать лишь одна основная форма движения – поступательная. Амер сохраняет свое движение до 38 тех пор, пока не столкнется с другим амером, что их обоих заставит изменить направление движения. Конечно, при этом могут возникнуть и деформации амеров, и вращение их, на что затратится энергия, однако эти формы движения для эфира в целом не являются главными, поэтому изучение влияния этих форм на параметры эфира – дело будущего. Элементарный объем эфира обладает уже тремя формами движения – диффузионной, поступательной и вращательной (рис. 5.1). Эти три формы имеют следующие семь видов движения: диффузионная – три вида – перенос масс (если плотности в различных областях пространства разные); перенос количества движения (если в газе есть градиент скоростей потоков); перенос энергии (если в газе есть разность температур) (рис. 5.2); поступательная – два вида – ламинарное течение (типа ветра) и первый звук (передача малого приращения давления) (рис. 5.3); вращательная – два вида – разомкнутое вращение (типа смерча) и замкнутое вращение (типа тороида) (рис. 5.4). Остальные формы движения газа – это лишь комбинации перечисленных. Из всех перечисленных форм и видов движения эфира только один вид движения – тороидальный – может обеспечить в ограниченном пространстве локализацию уплотненного газа, все остальные виды движения газа в пространстве не локализованы. Таким образом, тороидальный вихрь – единственное образование которое может отождествляться с микрочастицами. Следовательно, нужно разобраться в том, как устроен газовый вихрь. Специально поставленные эксперименты показали, что линейный газовый вихрь представляет собой трубу с уплотненными стенками с пониженным давлением внутри трубы (центробежные силы отбрасывают газ из центра к стенкам) и градиентным пограничным слоем вокруг нее. 39 Рис. 5.1. Движение амера, формы и виды движения эфира Рис. 5.2. Диффузионные формы движения эфира 40 Рис. 5.3. Поступательные формы движения эфира Рис. 5.4. Вращательные формы движения эфира 41 Благодаря пограничному слою газовая труба не рассыпается, а вращается почти как твердое тело. В пограничном слое благодаря высокому градиенту скоростей температура понижена, вязкость тоже понижена, и вихрь вращается в пограничном слое, как в подшипнике скольжения, отдавая внешней среде лишь минимум энергии (рис. 5.5). Рис. 5.5. Цилиндрический газовый вихрь: поперечное сечение вихря (а); распределение плотности газа (б); эпюра касательных скоростей (в); зависимость угловой скорости вращения газа в вихре от радиуса (г) 42 Рис. 5.6. Сжатие газового вихря на входе в воздухозаборник (слева вверху) реактивного двигателя самолета (на стоянке) Тот факт, что газовый вихрь имеет трубообразное строение, известно достаточно давно. Это было подтверждено на специальном стенде с помощью установленного на земле реактивного самолетного двигателя, при запуске которого перед ним образуется вихрь (рис. 5.6). Такие вихри часто образуются на стоянках у обычных самолетов, у которых двигатели расположены достаточно низко. Тогда такой смерч подметает площадку перед самолетом и тащит в турбину все, что на ней оказывается – песок, комья земли, камни и забытые инструменты. Все это летит в турбину и ломает лопатки. Для выяснения всех обстоятельств и был построен 43 стенд, с помощью которого нашли радикальный способ борьбы с поломками. Оказалось, что перед запуском нужно подметать площадку и не забывать на ней инструменты. Природные смерчи и циклоны им имеют торообразную форму. Но обычно мы видим только центральную часть, где воздух сильно сжат. Но воздух, поднявшись вверх, дальше расте- кается и вновь опускается вниз, снова устремляясь к этой центра- льной части. Но ту часть движения воздуха, где он движется вниз мы не видим, потому что он растекается по большой площади, поэтому опускается очень медленно. Однако на фотографиях циклонов торообразная фигура циклона все же видна. Винтовое движение газа в вихревом столбе более устойчиво, чем не винтовое, так как градиент скорости в пограничном слое увеличивается – добавляется еще одно перемещение газа вдоль столба. Поэтому смерчи наиболее устойчивы тогда, когда в них сочетаются два движения – вращательное вокруг оси и поступательное вдоль оси вихря (рис. 5.7). Рис. 5.7. Смерч: а – внешний вид смерча; б – структура смерча по по данным наблюдений 44 Рис. 5.8. Образование циклона в районе Флориды (снимок из космоса) В тороидальном же вихре происходит все то же самое, только эта труба газового вихря замкнута сама на себя, в результате чего получается винтовой вихревой тороид (рис. 5.8). Винтовые вихревые тороиды могут иметь несколько форм. Одна из них – тонкое вихревое кольцо. Вторая форма – шарооб- разная, близкая к так называемому вихрю Хилла. В зависимос- ти от ориентации кольцевого движения (движения вокруг главной оси тороида) по отношению к тороидальному движению вокруг кольцевой оси тороидального тела возможно правое или левое винтовое движение. Может быть и только одно тороида- льное движение, без кольцевого, но такой вихрь менее устойчив. К винтовому тороиду могут присоединяться дополнительные – присоединенные вихри. Примером такого многослойного вихря является так называемый вихрь Тейлора. Этот тип вихря был получен экспериментально в двадцатых годах текущего столетия Дж.Тейлором. Напоминает атом с его электронными оболочками, не правда ли (рис. 5.9). 45 Рис. 5.9. Вихрь Тэйлора Благодаря наличию пограничного слоя, удерживающего вихрь от разрушения, возникает градиент скоростей, что приводит к падению температуры в пограничном слое, а поэтому всякий газовый вихрь охлаждает окружающую среду, постепенно забирая от нее тепло. Когда все температуры выровняются, температурный пограничный слой перестанет существовать, а кинетическая энергия вращения тела вихря исчерпается, после чего вихрь разрушится. Когда вихрь отдает часть своей энергии, он увеличивает свой диаметр. Причин тому несколько: одна из них заключается в том, что внутреннее давление в центральной части вихря начинает подниматься, так как центробежные силы не так интен- сивно теперь отбрасывают газ из внутренней области к стенкам. Как образуются вихри? Для их образования достаточно просто хаотического соударения струй газа. Начиная с некоторого критического значения скоростей соударения, газ начинает закручиваться, и в пограничных областях струй образуются кольцевые вихри. Эти вихри самоуплотняются, поскольку газ, в отличие от жидкости, сжимаем, уменьшаются в размерах и самопроизвольно делятся. Аналогичное явление, только без сжатия вихрей, можно наблюдать в обычной воде, если в нее капнуть с небольшой высоты каплю чернил. Этот простой, красивый и эффектный эксперимент доступен каждому. 46 При проведении опыта не забудьте поставить около банки с водой настольную лампу, чтобы лучше наблюдать образование вихревых колец (рис. 5.10). Рис. 5.10. Образование и деление тороидальных вихревых колец в жидкости при падении капли Рис. 5.11. Вращение тела: вокруг цилиндра (а); вокруг центра при изменении радиуса вращения (б); структура нижней части смерча, в которой газ движется с изменением радиуса вращения (в) 47 Здесь следует сделать одно немаловажное замечание. При вихреобразовании формирующиеся вихри самопроизвольно уменьшают свой размер. Это хорошо видно на фотографиях искусственно созданных вихрей и смерчей. По мере раскрутки вихрь уменьшает свой радиус. Выяснено, что при этом внешнее давление атмосферы сдавливает вихрь и часть потенциальной энергии атмосферы самопроизвольно переходит в кинетическую энергию вращения вихря. То же самое происходит и при вихреобразовании эфира (рис. 5.11). Лучше всего наблюдать процесс сжатия вихря с помощью так называемого ящика Вуда. Возьмите фанерный ящик из под посылки и провертите в его дне отверстие диаметром сантиметров 6-7. Вместо крышки натяните упругую мембрану, например, резину. Внутрь надо бросить дымовушку, чтобы коптела, например, поджечь расческу или что-нибудь другое. Поставьте ящик на бок и ударьте резко по мембране. Из отверстия тотчас же вылетит дымовой тороидальный вихрь (рис. 5.12). 1 2 3 4 Рис. 5.12. Образование газовых тороидов с помощью ящика Вуда: 1 – ящик Вуда; 2 – стадия сжатия тороида; 3 – стадия расширения тороида (диффузия); 4 – стадия развала тороида Полет такого вихря можно разделить на три этапа. На первом вихрь сжимается. Здесь происходит увеличение энергии вихря за счет преобразования потенциальной энергии атмосферы – ее давления в кинетическую энергию вихря. На втором этапе вихрь 48 начинает расширяться. Здесь он теряет энергию. А на третьем заключительном этапе он тормозится и диффундирует, растворяется в воздухе. Вихрь окончил свое существование. Знаменитый американский физик Роберт Вуд, придумавший этот ящик, развлекался тем, что на лекциях раздавал с его помощью пощечины разболтавшимся студентам, а на улице, прицелившись с подоконника, сбивал с прохожих шляпы на расстояниях в сотни метров. Желающие могут попробовать это на себе. |