Главная страница
Навигация по странице:

  • А. Факторы, влияющие на силу сокращения мышцы. 1.

  • Сегментарный уровень регуляции движения и тонуса мышц 1. https://studopedia.ru/15_53687_spinnoy-mozg---vmestilishche- motoneyronov.html Мотонейро́н

  • Двигательный нейрон (мотонейрон) и его аксон вместе с мышечными волокнами, которые он контролирует, называют двигательной единицей

  • Реципрокный контроль мышц-антагонистов

  • Связи между мотонейронами

  • Колоквиум. Скелетная мышца как активная часть опорно двигательного аппарата Моторная единица (МЕ)


    Скачать 2.27 Mb.
    НазваниеСкелетная мышца как активная часть опорно двигательного аппарата Моторная единица (МЕ)
    АнкорКолоквиум
    Дата16.12.2022
    Размер2.27 Mb.
    Формат файлаpdf
    Имя файла4_kollok_fiztologia_oda1-1.pdf
    ТипДокументы
    #848149
    страница2 из 4
    1   2   3   4
    Гладкий Т. образуется при более высокой частоте раздражения, когда каждый последующий стимул приходит в фазу укорочения мышцы. Суммационная природа Т. подтверждается тем, что во время Т. в мышце ритмически возникают электрические потенциалы действия, сопровождающие каждую вспышку возбуждения. Тетаническое сокращение по амплитуде и длительности значительно превосходит одиночное сокращение. Характер Т. определяется тем, в какую фазу возбудимости мышцы (например, фазы экзальтации,
    рефрактерности) приходит очередное раздражение. На зависимость величины Т.
    от уровня возбудимости мышцы впервые указал Н. Е. Введенский, который отметил, что при повышении частоты раздражения Т. вначале достигает максимальной амплитуды (Оптимум), а затем амплитуда Т. резко снижается (Пессимум). Для тетанически сократившихся мышечных волокон характерна относительно быстрая утомляемость, так как Т. сопровождается значительным расходованием энергетических ресурсов мышцы.
    Пессимум (от лат. pessimum — наихудшее) -(физиологическое), угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений; описано в 1886 Н. Е. Введенским (См. Введенский).
    Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление слитного сокращения мышцы — так называемое Тетануса, вызываемое постепенным возрастанием частоты или силы раздражений (см. Оптимум), при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории Парабиоза. Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки — 0,02—0,03 сек).
    Это время определяет функциональные возможности нервных окончаний — их
    Лабильность. Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение —
    парабиоз, блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение. Явление П. обнаружено в ряде органов и тканей; многие исследователи полагают, что оно лежит в основе рефлекторной регуляции деятельности организма со стороны нервной системы.
    Оптимум (от лат. optimum — наилучшее) - уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани.
    Явление О. описано в 1886 Н. Е. Введенским (См. Введенский), который на нервно- мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы — Тетанус.
    О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.
    6. https://studopedia.ru/8_109636_sila-rabota-i-utomlenie-mishts.html
    Сила - мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила), при изометрическом - максимальным напряжением, которое она может развить (статическая сила).
    В различных мышцах тела соотношение между числом медлен-,, ных и быстрых мышечных волокон неодинаково, поэтому и сила их сокращения, и степень укорочения вариабельны.

    При снижении физической нагрузки - особенно большой интенсивности, при которой требуется активное участие быстрых мышечных волокон, - последние истончаются
    (гипотрофируются) быстрее, чем медленные волокна, быстрее уменьшается их число.
    А. Факторы, влияющие на силу сокращения мышцы.
    1. Число сокращающихся волокон в данной мышце. С увеличением
    сокращающихся волокон возрастает сила сокращений мышцы в целом. В
    естественных условиях сила сокращения мышцы возрастает с увеличением нервных
    импульсов, поступающих к мышце, в эксперименте - с увеличением силы раздражения.
    2. Соотношение быстрых и медленных волокон. Чем больше быстрых волокон
    содержит мышца, тем больше возможная ее сила сокращения.
    3. Поперечное сечение мышцы. Различают геометрическое и
    физиологическое поперечные сечения мышцы. Геометрическое поперечное сечение
    перпендикулярно продольной оси мышцы, физиологическое - длине мышечных волокон.
    В портняжной мышце, например, все волокна параллельны длине оси мышцы - парал-
    лельноволокнистый
    тип. Большинство мышц – перистого типа, их волокна расположены косо, прикрепляясь с одной стороны к центральному сухожильному тяжу, а с другой стороны - к наружному сухожильному футляру. Физиологическое поперечное сечение совпадает с
    геометрическим только в мышцах с продольно расположенными волокнами; у мышц с косым расположением волокон физиологическое поперечное сечение может значительно превосходить геометрическое поперечное сечение.
    7. https://studopedia.ru/8_109636_sila-rabota-i-utomlenie-mishts.html
    Утомление
    - временное снижение или потеря работоспособности отдельной клетки, ткани, органа или организма в целом, наступающее после нагрузок (деятельности).
    Утомление мышц происходит при их длительном сокращении (работе) и имеет определенное биологическое значение, сигнализируя о истощении (частичном) энергетических ресурсов.
    При утомлении понижаются функциональные свойства мышцы: возбудимость, лабильность и сократимость. Высота сокращения мышцы при развитии утомления постепенно снижается. Это снижение может дойти до полного исчезновения сокращений. Понижаясь, сокращения делаются все более растянутыми, особенно за счет удлинения периода расслабления: по окончании сокращения мышца долго не возвращается к первоначальной длине, находясь в состоянии
    контрактуры
    (крайне замедленное расслабление мышцы). Скелетные мышцы утомляются раньше гладких. В скелетных мышцах сначала утомляются белые волокна, а потом красные.
    Из различных представлений о механизме утомления одной из наиболее ранних теорий, объясняющих утомление, была
    теория
    истощения,
    предложенная К. Шиффом. Согласно этой теории причиной утомления служит исчезновение в мышце энергетических веществ, в частности гликогена.
    Однако, детальное изучение показало, что в
    утомленных до предела мышцах содержание гликогена еще значительно. В дальнейшем Е. Пфлюгером была выдвинута
    теория засорения органа
    продуктами рабочего распада (теория
    отравления). Согласно этой теории, утомление объясняется накоплением большого количества молочной
    , фосфорной кислот и недостатком кислорода, а так же других продуктов обмена, которые нарушают обмен веществ в работающем органе и его деятельность прекращается.
    Обе эти теории сформулированы на основании данных, полученных в экспериментах на изолированной скелетной мышце и объясняют утомление односторонне и упрощенно.
    Дальнейшим изучением утомления в условиях целого организма установлено, что в утомленной мышце появляются продукты обмена веществ, уменьшается содержание гликогена, АТФ, креатинофосфата. Изменения наступают в сократительных белках мышцы. Происходит связывание или уменьшение сульфгидрильных групп актомиозина, в результате чего нарушается процесс синтеза и распада АТФ. Нарушения в химическом составе мышцы, находящейся в целостном организме, выражены в меньшей степени, чем в изолированной благодаря транспортной функции крови.
    Исследованиями Н.Е. Введенского установлено, что утомление прежде всего развивается в нервно-мышечном синапсе в связи с низкой его лабильностью. Быстрая утомляемость синапсов обусловлена несколькими факторами.
    Во-первых, при длительном раздражении в нервных окончаниях уменьшается запас медиатора, а его синтез не поспевает за расходованием. Во-вторых, накапливающиеся продукты обмена в мышце понижают чувствительность постсинаптической мембраны к ацетилхолину, в результате чего уменьшается величина постсинаптического потенциала.
    Когда он понижается до критического уровня, в мышечном волокне не возникает возбуждения.
    И.М.Сеченов (1903), исследуя на сконструированном им эргографе для двух рук работоспособность мышц при поднятии груза, установил, что работоспособность утомленной правой руки восстанавливается полнее и быстрее после активного отдыха, т.е. отдыха сопровождаемого работой левой руки. Подобного же рода влияние на работоспособность утомленной руки оказывает сочетающееся с отдыхом раздражение индукционным током чувствительных (афферентных) нервных волокон кисти другой руки, а также работа ногами, связанная с подъемом тяжести, и вообще двигательная активность.
    Таким образом, активный отдых, сопровождающийся умеренной работой других мышечных групп, оказывается более эффективным средством борьбы с утомлением двигательного аппарата, чем простой покой.
    Причину наиболее эффективного восстановления работоспособности двигательного аппарата в условиях активного отдыха Сеченов с полным основанием связывал с действием на центральную нервную систему
    афферентных импульсов от мышечных, сухожильных рецепторов работающих мышц.
    В организме в различных звеньях рефлекторной дуги утомление в первую очередь наступает в нервных центрах, особенно в клетках коры больших полушарий.
    В настоящее время установлено, что функциональное состояние мышц находится под влиянием центральной нервной системы и прежде всего коры больших полушарий. Это влияние осуществляется через соматические нервы, вегетативную нервную систему и железы внутренней секреции.
    По двигательным нервам к мышце поступают импульсы из спинного и головного мозга, вызывая ее возбуждение и сокращение, сопровождающиеся изменением физико- химических свойств и функционального состояния мышцы.
    Импульсы, поступающие по симпатическим волокнам в мышцу, усиливают процессы обмена веществ, кровоснабжения и работоспособность мышцы.
    Такое же действие оказывают и медиаторы симпатической системы - адреналин и норадреналин.
    Однако единой теории, объясняющей причины утомления, сущность утомления до настоящего времени нет, т.к. в естественных условиях утомление двигательного аппарата организма является многофакторным процессом.
    Наступление утомления мышц можно задержать с помощью тренировки. Она развивает и совершенствует функциональные возможности всех систем организма: нервной, дыхательной, кровообращения, выделения и т.д.
    При тренировке увеличивается объем мышц в результате роста и утолщения мышечных волокон возрастает мышечная выносливость. В мышце повышается содержание гликогена, АТФ и креатинфосфата, ускоряется течение процессов распада и восстановления веществ, участвующих в обмене. В результате тренировки коэффициент использования кислорода при работе мышц повышается, усиливаются восстановительные процессы вследствие активизации всех ферментативных систем, уменьшается расход энергии. При тренировке совершенствуется регуляторная функция центральной нервной системы, и в первую очередь, коры больших полушарий.

    Сегментарный уровень регуляции движения и тонуса
    мышц
    1. https://studopedia.ru/15_53687_spinnoy-mozg---vmestilishche- motoneyronov.html
    Мотонейро́н (от лат. motor — приводящий в движение и нейрон; двигательный нейро́н)
    — крупная нервная клетка в передних рогах спинного мозга. Мотонейроны обеспечивают моторную координацию и поддержание мышечного тонуса.
    Двигательный нейрон
    (мотонейрон) и его аксон вместе с мышечными волокнами, которые он контролирует, называют
    двигательной единицей
    . Такие единицы можно приближенно сравнить с входными участками сенсорных систем в том отношении, что они ближе всего к внешнему миру. В этом смысле спинной мозг занимает в нейронном
    «конвейере» примерно такое же положение, как сетчатка в зрительной системе. И спинной мозг, и сетчатка представляют собой скопления нейронов, несколько отодвинутые с периферии вглубь и осуществляющие важные этапы интеграции и фильтрации сигналов с использованием локальных сетей. Относительно простые виды интеграции, возможные на уровне спинного мозга, являются, однако, лишь прелюдией по отношению к более мощным и детализированным двигательным актам, которые могут выполняться под
    управлением спинного мозга
    при получении им соответствующих команд из
    двигательных центров коры больших полушарий
    Спинальные рефлексы
    . Мышцы снабжены также и чувствительными нервами. Эти нервы участвуют в
    проприоцепции *
    - позволяют нам чувствовать положение и движения собственного тела. Сенсорные датчики находятся либо в глубине мышц, в специальных комплексах, называемых мышечными веретенами, либо в сухожилиях, там, где мышцы прикрепляются к кости. Эти датчики
    информируют спинной мозг
    или
    двигательные
    центры
    более высоких уровней о том, какое напряжение развивает в данный момент мышца. Эта информация помогает определить положение сустава, а тем самым и исходную позицию для начала следующего движения.
    2.
    * Проприорецептор (лат. proprius собственный + рецептор; син.: нервное окончание проприоцептивное, проприоцептор) — механорецептор.
    расположенный в тканях мышечно-суставного аппарата, воспринимающий их
    растяжение или сокращение.

    Источник: https://meduniver.com/Medical/Physiology/1019.html
    MedUniver
    3.
    Важность гамма-эфферентной системы подчеркивает тот факт, что 31% всех двигательных нервных волокон к мышцам представлены тонкими эфферентными волокнами типа А, а не толстыми двигательными волокнами типа А. Каждый раз, когда сигналы передаются от двигательной коры или от любой другой области головного мозга к альфа-мотонейронам, в большинстве случаев одновременно стимулируются гамма-мотонейроны, что называют коактивацией альфа- и гамма-мотонейронов. Это ведет к одновременному сокращению экстрафузальных волокон скелетных мышц и интрафузальных волокон мышечных веретен.
    Сокращение интрафузальных мышечных волокон одновременно с сокращением крупных мышечных волокон скелетных мышц имеет двойное значение. Во-первых, это удерживает длину рецепторной части мышечного веретена от изменений во время сокращения всей мышцы. Следовательно, коактивация сдерживает противодействие рефлекса с мышечных веретен мышечному сокращению. Во-вторых, это сохраняет соответствующую функцию демпфирования мышечного веретена, независимо от любых изменений длины мышцы.
    Например, если бы мышечное веретено не сокращалось и не расслаблялось вместе с крупными мышечными волокнами, рецепторная часть веретена была бы то слишком свободна, то перерастянута, что не соответствует оптимальным условиям для функции веретена. Гамма-эфферентная система возбуждается непосредственно сигналами из
    Рис. 57. Когда происходит простое рефлекторное действие, рецепторы растяжения мышцы-разгибателя непосредственно вызывают активацию мотонейронов этой мышцы, что ведет к ее сокращению. При перекрестном рефлекторном действии внутренние связи данного сегмента спинного мозга позволяют периферическим кожным рецепторам и рецепторам растяжения вызывать координированные мышечные сокращения без участия высших уровней двигательной системы. В зависимости от схемы связей команды, поступающие к мотонейронам, управляют мышцами-антагонистами-сгибателями или разгибателями.
    Когда доктор во время осмотра проверяет ваши рефлексы, он ударяет молоточком по сухожилию ниже коленной чашки. От этого удара растягивается и расположенное выше сухожилие, прикрепленное непосредственно к четырехглавой мышце бедра. В результате активируются находящиеся в этом сухожилии рецепторы, которые по сенсорным волокнам передают возбуждение спинальным мотонейронам, и последние заставляют мышцу бедра сократиться, а вашу ногу - подпрыгнуть (рис. 57, слева). Весь рефлекс совершается очень быстро, обычно меньше чем за секунду, - так проворно эти нейроны управляются со своими местными делами.
    Другие локальные решения, которые также принимаются спинным мозгом, связаны, например, с болевыми раздражителями. Если вас когда-нибудь ударяло током при попытке вытащить из тостера застрявший там кусок хлеба, то вы, возможно, заметили, что ваша рука взлетала в воздух еще до того, как вы почувствовали боль. Под контролем спинного мозга ваша пострадавшая конечность автоматически отдергивается в результате ее сгибания в суставах. При таких неврологических заболеваниях, как рассеянный склероз и амиотрофический боковой склероз, одна из неприятностей состоит в том, что сенсорные нервы не обеспечивают должного выполнения сгибательных рефлексов. В результате больные страдают от частых и длительных соприкосновений с повреждающими объектами.

    4.
    Реципрокный контроль мышц-антагонистов. Если вы, находясь в сидячем положении, наступите на кнопку, то можете даже не обратить внимания на то, что вы отдернули пораненную ступню, согнув ее. Но вместо этого вы можете заметить, что ваша другая нога отреагировала противоположным движением- разгибанием ступни. Такое движение конечностей называется «перекрестным разгибанием» (рис. 57, справа). Связи
    между мотонейронами, контролирующими этот рефлекс, устанавливаются в спинном
    мозге еще до рождения. (Даже младенец, если его держать в вертикальном положении, чтобы он мог свободно двигать ногами, перебирает ими как при ходьбе. Эти движения обусловлены в основном активацией рецепторов кожи и сухожильных рецепторов растяжения.) Сенсорные нервные волокна, расположенные на подошве одной стопы, непосредственно активируют спинальные мотонейроны, которые вызывают сокращение мышц-сгибателей конечности, подвергшейся раздражению. Ветви тех же самых сенсорных волокон возбуждают мотонейроны, контролирующие разгибатели другой ноги.
    Этот
    1   2   3   4


    написать администратору сайта