Главная страница

Справочный материал. Глава 18 – Эндокринная система. Справочный материал по Физиологии. Глава 18 Эндокринная система


Скачать 0.66 Mb.
НазваниеСправочный материал по Физиологии. Глава 18 Эндокринная система
АнкорСправочный материал. Глава 18 – Эндокринная система.doc
Дата02.05.2018
Размер0.66 Mb.
Формат файлаdoc
Имя файлаСправочный материал. Глава 18 – Эндокринная система.doc
ТипДокументы
#18804
КатегорияМедицина
страница3 из 6
1   2   3   4   5   6
часть. Органические вещества костного матрикса синтезируют остеобласты. К макромолекулам органического матрикса относятся коллагены (коллаген типа I — 90–95% и коллаген типа V) и неколлагеновые белки (остеонектин, остеокальцин, протеогликаны, сиалопротеины, морфогенетические белки, протеолипиды, фосфопротеины), а также гликозаминогликаны (хондроитинсульфат, кератансульфат).

 Остеонектин, относящийся к Ca2+-связывающим белкам, поддерживает в присутствии коллагена осаждение Ca2+ и PO43– и соединён одним своим концом с кристаллом гидроксиапатита, а другим с молекулой коллагена типа I.

 Остеокальцин участвует в процессе кальцификации, связываясь с кристаллами гидроксиапатита при помощи остатков  карбоксиглутаминовой кислоты.

 Морфогенетические белки кости (семейство трансформирующих факторов роста ) — регуляторные (в частности, они индуцируют развитие кости на месте хряща (энхондральный остеогенез).

 Неорганическая часть в значительном количестве содержит два химических элемента — кальций (35%) и фосфор (50%), образующие кристаллы гидроксиапатита — [Ca10(PO4)6(OH)2H2O]. В состав неорганической части кости также входят бикарбонаты, цитраты, фториды, соли Mg2+, K+, Na+.

 Кристаллы гидроксиапатита соединяются с молекулами коллагена через остеонектин. Такая связка делает кости исключительно устойчивыми к растяжению и сжатию.

 В организме взрослого человека содержится около 1000 г кальция. 99% всего кальция находится в костях. Около 99% кальция костей входит в состав кристаллов гидроксиапатита. Лишь 1% кальция костей находится в виде фосфатных солей, именно эти соли легко обмениваются между костью и кровью и играют роль буфера («обменный кальций») при изменениях концентрации кальция в плазме крови.
Минерализация остеоида

Остеоид — неминерализованный органический костный матрикс вокруг остеобластов, синтезирующих и секретирующих его компоненты. В дальнейшем остеоид минерализуется за счёт активности щелочной фосфатазы. Этот фермент осуществляет гидролиз эфиров фосфорной кислоты с образованием ортофосфата, который взаимодействует с Ca2+, что приводит к образованию осадка в виде аморфного фосфата кальция Ca3(PO4)2 с последующим формированием из него кристаллов гидроксиапатита. Для нормальной минерализации остеоида особенно необходим 1,25 дигидроксихолекальциферол (активная форма витамина D3 — кальцитриол). Способствуя всасыванию кальция и фосфора в кишечнике, кальцитриол обеспечивает их необходимую концентрацию для запуска кристаллизационных процессов в костном матриксе. Прямо воздействуя на остеобласты, кальцитриол повышает активность щелочной фосфатазы в этих клетках, способствуя минерализации костного матрикса.
Клетки костной ткани

 Остеобласты активно синтезируют и секретируют вещества костного матрикса практически через всю поверхность клетки, что даёт возможность остеобласту окружить себя матриксом со всех сторон. По мере снижения синтетической и секреторной активности остеобласты становятся остеоцитами, замурованными в костный матрикс. И остеобласты, и остеоциты экспрессируют рецепторы ПТГ и кальцитриола.

 Остеоциты — зрелые неделящиеся клетки, расположенные в костных полостях, или лакунах. Тонкие отростки остеоцитов находятся в канальцах, отходящих в разные стороны от костных полостей (лакунарно–канальцевая система). Остеоциты поддерживают структурную целостность минерализованного матрикса, участвуют в регуляции обмена Ca2+ в организме. Эта функция остеоцитов находится под контролем со стороны Ca2+ плазмы крови и различных гормонов. Лакунарно–канальцевая система заполнена тканевой жидкостью, через которую осуществляется обмен веществ между остеоцитами и кровью. В канальцах постоянно циркулирует жидкость, что поддерживает диффузию метаболитов и обмен между лакунами и кровеносными сосудами надкостницы. По химическому составу лакунарно–канальцевая жидкость отличается от плазмы крови или жидкости в матриксе других тканей. Концентрация Ca2+ и PO43– в лакунарно–канальцевой жидкости превышает критический уровень для спонтанного осаждения солей Ca2+, что указывает на присутствие секретируемых костными клетками ингибиторов осаждения, контролирующих процесс минерализации.

 Остеокласты — крупные многоядерные клетки системы мононуклеарных фагоцитов. Предшественники остеокластов — моноциты. Для дифференцировки остеокластов необходимы колониестимулирующий фактор макрофагов (M-CSF) и кальцитриол, а для их активизации ИЛ6 и продуцируемый остеобластами фактор дифференцировки остеокластов (лиганд остеопротегерина). Остеокласты расположены в области резорбции (разрушения) кости (рис. 18–8,I).



Рис. 18–8. КОСТНАЯ ТКАНЬ. IОстеокласт [11]. Цитоплазматические выросты гофрированной каёмки направлены к поверхности костного матрикса. В цитоплазме содержатся многочисленные лизосомы. IIОстеокласт и резорбция кости [11]. При взаимодействии остеокласта с поверхностью минерализованного костного матрикса карбоангидраза II (CA II) катализирует образование H+ и HCО3. H+ при помощи протонной H+,K+ АТФазы активно выкачивается из клетки, что приводит к закислению замкнутого пространства лакуны. Гидролитические ферменты лизосом расщепляют фрагменты костного матрикса. А — остеокласт на поверхности кости; Б — часть гофрированной каёмки; В — часть клеточной мембраны остеокласта в области гофрированной каёмки. IIIТрабекулы костной ткани. Слева — в норме, справа — остеопороз. IVВозрастная динамика костной массы. Для гидроксиапатита даны относительные значения.

Гофрированная каёмка остеокласта (рис. 18–8,II) — многочисленные цитоплазматические выросты, направленные к поверхности кости. Через мембрану выростов из остеокласта выделяется большое количество H+ и Cl, что создаёт и поддерживает в замкнутом пространстве лакуны кислую среду (pH около 4), оптимальную для растворения солей кальция костного матрикса. Образование H+ в цитоплазме остеокласта катализирует карбоангидраза II. Остеокласты содержат многочисленные лизосомы, ферменты которых (кислые гидролазы, коллагеназы, катепсин K) разрушают органическую часть костного матрикса.
Гормональная регуляция

Регуляция роста

Синтез макромолекул костного матрикса стимулируют кальцитриол, ПТГ, соматомедины, трансформирующий фактор роста , полипептидные факторы роста из кости.

 Соматомедины стимулируют анаболические процессы в скелетных тканях (синтез ДНК, РНК, белка, включая протеогликаны), а также сульфатирование гликозаминогликанов. Активность соматомединов определяет гормон роста (соматотропин).

 Витамин C необходим для образования коллагена. При дефиците этого витамина замедляются рост костей и заживление переломов.

 Витамин A поддерживает образование и рост кости. Недостаток витамина тормозит остеогенез и рост костей. Избыток витамина A вызывает зарастание эпифизарных хрящевых пластинок и замедление роста кости в длину.

Регуляция минерализации

Кальцитриол, необходимый для всасывания Ca2+ в тонком кишечнике, поддерживает процесс минерализации. Кальцитриол стимулирует минерализацию на уровне транскрипции, усиливая экспрессию остеокальцина. Дефицит витамина D3 приводит к нарушению минерализации кости, что и наблюдают при рахите у детей и остеомаляции у взрослых.

Регуляция резорбции

 Резорбцию кости усиливают ПТГ, ИЛ1, ИЛ6, трансформирующий фактор роста , Пг. Резорбцию кости поддерживают йодсодержащие гормоны щитовидной железы.

 Усиление резорбции под действием ПТГ не связано с прямым влиянием этого гормона на остеокласты, т.к. эти клетки не имеют рецепторов ПТГ. Активирующее влияние ПТГ и кальцитриола на остеокласты осуществляется опосредованно — через остеобласты. ПТГ и кальцитриол стимулируют образование фактора дифференцировки остеокластов — лиганда остеопротегерина.

 Резорбцию кости и активность остеокластов подавляют кальцитонин (через рецепторы в плазмолемме остеокластов) и  ИФН.

 Эстрогены ингибируют выработку ретикулярными клетками костного мозга колониестимулирующего фактора макрофагов (M-CSF), необходимого для образования остеокластов, что тормозит резорбцию кости.
Нарушения нормальной функции кости

Метаболические заболевания костей разделяют на следующие категории: остеомаляция, остеопороз, остеодистрофии, остеопетроз.

 Остеомаляция — патология скелета, возникающая при недостаточной минерализации органического матрикса костей. У детей это рахит, вызванный дефицитом витамина D, а у взрослых — нарушения метаболизма кальция, фосфора и витамина D.

 Остеопороз — снижение общего объёма костной ткани (рис. 18–8,III), приводящее к повышенной склонности к переломам. При остеопорозе повышена резорбция костной ткани и снижен остеогенез.

 Причины

 Возрастные. После 35–40 лет костная масса и всасывание кальция в кишечнике снижаются (рис. 18–8,IV).

 Гормональные. При уменьшении уровня эстрогенов (патология яичников, овариэктомия, менопауза) скорость резорбции кости увеличивается, так как дефицит эстрогенов снижает активность остеобластов и повышает чувствительность костной ткани к эффектам ПТГ.

 Генетические. У мужчин костная масса значительно больше, а остеопороз менее выражен, чем у женщин; в зрелом возрасте у женщин костная масса меньше, а остеопороз выражен больше. Существует семейная тенденция к развитию остеопороза.

 Классификация

 Постменопаузный остеопороз требует наблюдения минимум в течение 15 лет от начала менопаузы. Происходит разрежение рисунка костных балок, увеличивается частота переломов позвонков и других костей. У тучных женщин уровень эстрогенов после менопаузы выше, что в известной степени уменьшает риск развития остеопороза.

 Сенильный остеопороз характерен для мужчин и женщин старше 75 лет; происходит потеря как кортикальной кости, так и трабекул.

 Вторичный остеопороз может развиться на фоне глюкокортикоидной терапии, при нарушениях питания, длительной иммобилизации.

 Лечение. Предупредить остеопороз легче, чем лечить. Медикаментозные средства (кальцитонин, эстрогены, кальций, кальцитриол) способны лишь замедлить скорость потери кости, но, как правило, малоэффективны для восстановления уже утраченной костной массы.

 Эстрогены. Важное средство предупреждения остеопороза у женщин — введение с наступлением менопаузы эстрогенов, снижающих скорость потери кости.

 Кальций. Больным с остеопорозом показано по меньшей мере 1200–1500 мг кальция в день.

 Остеосклероз и остеопетроз — собирательные и на практике идентичные понятия, характеризующие относительное увеличение содержания костной ткани в составе костей, что приводит к уменьшению объёма костномозговых полостей с неизбежным нарушением гемопоэза.

 Акромегалия. Вследствие избытка соматотропина развиваются аномальные кости конечностей и лицевого скелета.

 Эктопическая кальцификация происходит в стенке сосудов при атеросклерозе и в норме при образовании «мозгового песка» в шишковидной железе.
Относящийся к ПТГ белок

Относящийся к ПТГ гормон — полипептид, состоящий из 141 аминокислотного остатка — имеет частичную структурную гомологию с ПТГ. Рецепторы этого гормона — рецепторы ПТГ типа I. По этой причине относящийся к ПТГ гормон оказывает те же физиологические эффекты, что и ПТГ. Кроме того, этот гормон околощитовидных желёз регулирует развитие молочной железы, зубов, эпидермиса и волосяных фолликулов. Гиперкальциемия при некоторых злокачественных опухолях, вероятно, связана с ПТГ-подобными эффектами этого гормона.


Надпочечники

Надпочечники (рис. 18–9) — парные органы, расположенные ретроперитонеально у верхних полюсов почки на уровне Th12 и L1. Формально это две железы — кора и мозговая часть, — имеющие разное происхождение (кора надпочечников развивается из мезодермы, хромаффинные клетки мозговой части — производные клеток нервного гребня). Различна и химическая структура синтезируемых гормонов: клетки коры надпочечников синтезирует стероидные гормоны (минералокортикоиды, глюкокортикоиды и предшественники андрогенов), хромаффинные клетки мозговой части — катехоловые амины. В то же время с функциональной точки зрения каждый надпочечник входит в состав единой системы быстрого реагирования на стрессовую ситуацию, обеспечивающую выполнение поведенческой реакции «беги или нападай». В этом контексте важны следующие обстоятельства, функционально обеспечивающие связь между симпатическим отделом нервной системы, хромаффинными клетками и глюкокортикоидами.



Рис. 18–9. Надпочечники и хромаффинная ткань. Кора надпочечников заштрихована точками, мозговая часть — сплошная заливка. Чёрными пятнами, расположенными вдоль позвоночника, указаны скопления хромаффинной ткани органы (симпатические параганглии).

 Гуморальным эффектором реакции «беги или нападай» является выбрасываемый в кровоток из мозговой части надпочечников адреналин.

 Хромаффинные клетки образуют синапсы с преганглионарными симпатическими нейронами и расцениваются как постганглионарные клетки эфферентной симпатической иннервации, выбрасывающие в кровь адреналин в ответ на синаптическую секрецию ацетилхолина и его связывание с никотиновыми холинорецепторами.

 В мозговую часть надпочечников поступает содержащие глюкокортикоиды кровь из корковой части органа. Другими словами, синтез и секреция адреналина из хромаффинных клеток находятся под контролем глюкокортикоидов.
Стероидогенез

Синтез гормонов коры надпочечника (из железы выделено не менее 50 стероидов) по-разному происходит в отдельных зонах коры. Стероидные гормоны и промежуточные метаболиты синтезируются на базе холестерола (C27H46O, рис. 18–10Б), поступающего в эндокринные клетки путём опосредованного рецепторами эндоцитоза из циркулирующих в крови липопротеинов низкой плотности. Незначительное количество холестерола синтезируется в самих эндокринных клетках. Холестерол аккумулируется в виде его эфиров в липидных каплях. Холестерол и все стероидные гормоны построены на основе 17-углеродной структуры — циклопентанпергидрофенантрена (рис. 18–10А)



Рис. 18–10. Циклопентанпергидрофенантрен (слева) и холестерол (справа) [11]. Слева указана нумерация колец и углеродных атомов в составе колец, справа — нумерация атомов углерода в составе боковой цепи. Тестостерон не образуется в коре надпочечников.

Стероидогенез (рис. 18–11) обеспечивает множество ферментов, расположенных в митохондриях, цитозоле и гладкой эндоплазматической сети. Подавляющее большинство превращений в коре надпочечников, осуществляют ферменты, относящиеся к группе цитохромов P450. Ферменты этой группы, а также не относящейся к цитохромам 3-гидроксистероид дегидрогеназы активируют АКТГ и ангиотензин II.



Рис. 1811. Пути синтеза стероидных гормонов надпочечника. Выделенные двойным контуром превращения в норме происходят вне надпочечника.

Мутации генов, кодирующих ферменты стероидогенеза, приводят к развитию врождённой дисфункции коры надпочечников — группе патологических процессов, сочетающихся с гиперплазией (увеличением массы) коры надпочечников.

Недостаточность 21-гидроксилазы — наиболее частая причина гиперплазии коры надпочечников (>90%). При этом дефицит кортизола стимулирует выработку АКТГ, что приводит к гиперплазии коры надпочечников и избыточной продукции андрогенов. Подобные нарушения при развитии плода часто вызывают изменения гениталий у девочек. При избытке андрогенов в постнатальном периоде происходит вирилизация (появление вторичных половых признаков мужского пола) в препубертатном возрасте и у молодых женщин. У младенцев мужского пола следствие избытка андрогенов во время развития плода — макрогенитосомия. В постнатальном периоде наступает преждевременное половое созревание. При тяжёлой (натрий-дефицитной) форме недостаточности — наряду с уменьшением синтеза кортизола — снижена продукция альдостерона; дефицит минералокортикоидов приводит к гипонатриемии, гиперкалиемии, дегидратации и гипотензии.

Недостаточность 17-гидроксилазы приводит к гиперсекреции стероидных метаболитов —развивается артериальная гипертензия. Поскольку фермент необходим и для синтеза половых стероидных гормонов наблюдается дефицит андрогенов и эстрогенов. Такие нарушения вызывают развитие гермафродитоподобных гениталий у мальчиков и первичную аменорею у женщин.
1   2   3   4   5   6


написать администратору сайта