Главная страница

стальной каркас. КП МК Стальной каркас одноэтажного производственного здания ПЗ. Стальной каркас одноэтажного производственного здания


Скачать 6.69 Mb.
НазваниеСтальной каркас одноэтажного производственного здания
Анкорстальной каркас
Дата13.06.2022
Размер6.69 Mb.
Формат файлаdoc
Имя файлаКП МК Стальной каркас одноэтажного производственного здания ПЗ .doc
ТипПояснительная записка
#587882
страница9 из 9
1   2   3   4   5   6   7   8   9

4.5. Расчет и конструирование узла сопряжения верхней и нижней частей колонны


Расчетные комбинации усилий в сечении над уступом:

1) М=814.921 кН*м; N=-413.04 кН.

2) М=-155.079 кН*м; N=-672.24 кН.

Давление кранов Dmax=3034.6 кН.

Прочность стыкового шва (ш1, рис.24) проверяем по нормальным напряжениям в крайних точках сечения надкрановой части. Площадь шва равна площади сечения колонны.

1-я комбинация М и N.

Наружная полка:

σwН.п.=N/А0+IMI/Wх=-413.04*103/16720-814.921*106/4045928=-226.1 МПа.

wН.п.I=I-226.1I МПа < Ry=240 МПа.

Внутренняя полка:

σwВ.п.=N/А+IMI/W=-413.04*103/16720+814.921*106/4045928=176.7 МПа.

wВ.пI=I176.7I МПа < Ry=240 МПа.

2-я комбинация М и N:

Наружная полка:

σwН.п.=N/А0-M/Wх=-672.24*103/16720-(-155.079)*106/4045928=-1.9 МПа.

wН.п.I=I-1.9I МПа < Ry=240 МПа.

Внутренняя полка:

σwВ.п.=N/А+M/W=-672.24*103/16720+(-155.079)*106/44045928=-78.5 МПа.

wВ.пI=I-78.5I МПа < Ry=240 МПа.

Толщину стенки траверсы определяем из условия смятия:

tтр≥Dmax/(lсм*Rb*g),

где lсм=bop+2*tпл=300+2*20=340 мм,

bop=300 мм; tпл=20 мм; Rр=360 МПа.

tтр≥3034.6/(340*360*1)=24.8 мм, принимаем tтр=25 мм по ГОСТ 82-70*.

Усилие во внутренней полке верхней части колонны (2-ая комбинация):

Nп=N/2+M/hв,

Nп=-672.24/2+(-155.079)*103/700=-557.7 кН.

Длина шва крепления вертикального ребра траверсы к стенке траверсы (ш2):

Lш2=Nп/(4*kff*Rwf*gwf)<85*βf.*kf,

Lш2=557.7/(4*8*0,9*180*1)=107.6 мм < 85*0,9*8=612 мм.

Принимаем полуавтоматическую сварку проволокой марки Св-08А, d=1,4...2 мм.

В стенке подкрановой ветви делаем прорезь, в которую заводим стенку траверсы.

Для расчета шва крепления траверсы к подкрановой ветви (ш3) принимаем вторую комбинацию усилий, дающую наибольшую опорную реакцию траверсы F:

М=-155.079 кН*м; N=-672.24 кН.

F=N*hв/2*hн+M/hн-0,9*Dmax.

F=-672.24*700/(2*1750)+(-672.24)*103/1750-0,9*3034.6=-2954.2 кН.

Требуемая длина шва:

Lш3=F/(4*kff*Rwf*gwf) < 85*βf.*kf,

Lш3=2954.2/(4*9*0,9*180*1)=506.5 мм < 85*0,9*9=688.5 мм.

Из условия прочности стенки подкрановой ветви в месте крепления траверсы определяем высоту траверсы hтр:

hтр≥F/(2*tw*Rs*g),

где tw=17.5 мм – толщина стенки двутавра подкрановой ветви.

hтр≥2954.2*103/(2*17.5*140*1)=1205.8 мм.

Принимаем высоту траверсы hтр=1500 мм.

Проверим прочность траверсы как балки, нагруженной усилиями N, M, Dmax.

Максимальная поперечная сила в траверсе:

Qmax=N*hв/2*hн+M/hн-k*0,9*Dmax/2,

где k=1,2 – коэффициент, учитывающий неравномерную передачу усилия Dmax.

Qmax=-672.24*700/(2*1750)+(-155.079)/1750-1,2*0,9*3034.6/2=-1955.3 кН.

Касательное напряжение:

τтр=Qmax/(tтр*hтр),

τтр=1955.3/(25*1500)=52.1 МПа < Rs=140 МПа.


Рисунок 24. Соединение верхней и нижней частей колонны

4.6. Расчет и конструирование базы колонны

4.6.1. Определение расчетных усилий


База колонны представлена на рисунке 25.

Расчетные комбинации усилий в нижнем сечении колонны (сечение 4–4):

1) M=2207.16 кH*м; N=-3377.46 кH (для расчета базы наружной ветви);

2) M=-1425.54 кH*м; N=-3377.46 кH (для расчета базы подкрановой ветви).

Усилия в ветвях колонны:

- в подкрановой ветви:

Nв1=N*y2/h0+M/h0,

Nв1=3377.5*726/1693+1425.5*103/1693=2290.36 кН;

- в наружной ветви:

Nв2=N*y1/h0+M/h0,

Nв2=3377.5*967/1693+2207.2*103/1661=3232.86 кН.

4.6.2. База наружной ветви


Подберем плиту базы и траверсы наружной ветви колонны.

Требуемая площадь плиты:

Апл.тр=Nв2/(Rb*γ),

Апл.тр=3232.86/(8.5*1.2)=316947 мм2.

По конструктивным соображениям свес плиты с2 принимаем не менее 40 мм. Тогда:

В³bk+2*с2=597+2*40=677 мм, принимаем В=700 мм, тогда

с2=(В-bk)/2=(700-597)/2=51.5 мм.

Требуемая длина плиты:

Lтрпл.тр/В,

Lтр=316947/700=453 мм, принимаем L=500 мм.

Фактическая площадь плиты:

Апл.факт=B*L,

Апл.факт=700*500=350000 мм2.

Среднее напряжение в бетоне под плитой:

sb=Nв2пл.факт,

sb=3232.86*103/350000=9.24 МПа.

Из условия симметричного расположения траверс относительно центра тяжести ветви расстояние между траверсами в свету равно:

p=2*(bf+tw-z0),

p=2*(220+18-57)=362 мм.

Толщину траверсы принимаем tтрав=14 мм, тогда свес плиты с1 будет равен:

c1=(L-p-2*tтрав)/2,

c1=(500-362-2*14)/2=55 мм.

Определяем изгибающие моменты на отдельных участках плиты (на 1 м):

- участок 1 (консольный свес с=с1=55 мм):

M1b*c12/2=9.24*552/2=14.0 кН*м;

- участок 2 (консольный свес с=с2=51.5 мм):

M2b*c22/2=9.24*51.52/2=12.2 кН*м;

- участок 3 (плита, опертая на четыре стороны):

b/a=562/220=2.6 => α=0.125.

M3=α*σb*a2=0.125*9.24*2202*10-3=55.9 кН*м;

- участок 4 (плита, опертая на четыре стороны):

d=p-tw-a=362-18-220=124 мм,

b/d=562/124=4.5 => α=0.125,

M4=α*σb*d2=0.125*9.24*1242=17.7 кН*м.

Принимаем для расчета Мmax=55.9 кН*м.

Требуемая толщина плиты (с учетом припуска на фрезеровку - 2 мм):

tпл=(6*Mmax/Ry)0,5+2,

tпл=(6*103*55.9/240)0,5+2=39.4 мм, принимаем по ГОСТ 82-70* tпл=40 мм.

Высоту траверсы определяем из условия размещения шва крепления траверсы к ветви колонны. В запас прочности все усилия в ветви передаем на траверсу через 4 угловых шва. Сварка полуавтоматическая проволокой марки Св-08А; d=1,4…2 мм; f=0,9. Назначаем kf=14 мм.

Определяем требуемую длину шва:

lfтр=Nв2/(4*kff*Rwfwf) < 85*βf*kf,

lfтр=3232.86*103/(4*14*0.9*180*1)=356.4 мм < 85*0,9*14=1071 мм

Принимаем hтр=400 мм.

Подберем анкерные болты.

Для определения анкерных болтов базы наружной ветви принимаем следующие комбинации усилий (см. рисунок 25):

Mмакс нар=1329.37 кН*м, Nмин сжим=413.04 кН.

Усилие в болтах базы наружной ветви:

Fа нар=(Mмакс нар-Nмин сжим*y1)/h0,

Fа=(1329.37-413.04*967*10-3)*103/1693=549.3 кН.

Требуемая площадь нетто одного болта:

Aнтрнар=Fa нар/(n*R),

где n – количество болтов в базе, шт,

R – расчетное сопротивление растяжению фундаментного болта, МПа.

Aнтрнар=549.3*103/(2*185)=1484.6 мм2.

Принимаем по ГОСТ 24379.0-80 в базе подкрановой ветви фундаментные болты 2Æ56 с площадью одного болта Aн нар=1874.0 мм2.

Подберем анкерные плитки.

Расчетный момент:

M=0,5*Fа нар*p/2,

M=0,5*549.3*362*10-3/2=49.70 кН*м.

Требуемый момент сопротивления сеченияанкерной плитки с одной стороны от ветви колонны:

Wтр=M/(2*Ry),

Wтр=49.70*106/(2*240)=103547 мм3.

Примем два швеллера 14У по ГОСТ 8240-97 с суммарным моментом сопротивления Wx=140400 мм3.

Проверка прочности:

σ=M/(2*W)y,

σ=49.70*106/140400=177.0 МПа < Ry=240 МПа.

4.6.3. База подкрановой ветви


Подберем плиту базы и траверсы подкрановой ветви колонны.

Требуемая площадь плиты:

Апл.тр=Nв1/(Rb*γ),

Апл.тр=2290.36/(8.5*1.2)=224545 мм2.

По конструктивным соображениям свес плиты с2 принимаем не менее 40 мм. Тогда:

В³bk+2*с2=597+2*40=677 мм, принимаем В=700 мм, тогда

с2=(В-bk)/2=(700-597)/2=51.5 мм.

Требуемая длина плиты:

Lтрпл.тр/В,

Lтр=224545/700=321 мм, принимаем L=400 мм.

Фактическая площадь плиты:

Апл.факт=B*L,

Апл.факт=700*400=280000 мм2.

Среднее напряжение в бетоне под плитой:

sb=Nв1пл.факт,

sb=2290.36*103/280000=8.18 МПа.

Расстояние между траверсами в свету равно: p=230 мм.

Толщину траверсы принимаем tтрав=14 мм, тогда свес плиты с1 будет равен:

c1=(L-p-2*tтрав)/2,

c1=(400-230-2*14)/2=71 мм.

Определяем изгибающие моменты на отдельных участках плиты (на 1 м):

- участок 1 (консольный свес с=с1=71 мм):

M1b*c12/2=8.18*712/2=20.6 кН*м;

- участок 2 (консольный свес с=с2=51.5 мм):

M2b*c22/2=8.18*51.52/2=10.8 кН*м;

- участок 3 и 4 (плита, опертая на четыре стороны):

b/a=562/115=4.9 => α=0.125.

M3=α*σb*a2=0.125*8.18*1152*10-3=13.5 кН*м.

Принимаем для расчета Мmax=20.6 кН*м.

Требуемая толщина плиты (с учетом припуска на фрезеровку - 2 мм):

tпл=(6*Mmax/Ry)0,5+2,

tпл=(6*20.6*103/240)0,5+2=24.7 мм, принимаем по ГОСТ 82-70* tпл=25 мм.

Высоту траверсы определяем из условия размещения шва крепления траверсы к ветви колонны. В запас прочности все усилия в ветви передаем на траверсу через 4 угловых шва. Сварка полуавтоматическая проволокой марки Св-08А; d=1,4…2 мм; f=0,9. Назначаем kf=10 мм.

Определяем требуемую длину шва:

lfтр=Nв2/(4*kff*Rwfwf) < 85*βf*kf,

lfтр=2290.36*103/(4*10*0.9*180*1)=353.5 мм < 85*0,9*10=765 мм.

Принимаем hтр=400 мм.

Подберем анкерные болты.

Для определения анкерных болтов базы подкрановой ветви принимаем следующие комбинации усилий:

Mмакс вн=1348.5 кН*м, Nмин сжим вн=331.67 кН.

Усилие в болтах базы подкрановой ветви:

Fа вн=(Mмакс вн-Nмин сжим вн*y2)/h0,

Fа вн=(1348.5-331.67*726*10-3)*103/1693=654.3 кН.

Требуемая площадь нетто одного болта:

Aнтрвн=Fа вн/(n*R),

где n – количество болтов в базе, шт,

R – расчетное сопротивление растяжению фундаментного болта, МПа.

Aнтрвн=654.3*103/(2*185)=1768.4 мм2.

Принимаем по ГОСТ 24379.0-80 в базе подкрановой ветви фундаментные болты 2Æ56 с площадью одного болта Aн вн=1874.0 мм2.

Подберем анкерные плитки.

Расчетный момент:

M=0,5*Fа вн*p/2,

M=0,5*654.3*230*10-3/2=37.62 кН*м.

Требуемый момент сопротивления сеченияанкерной плитки с одной стороны от ветви колонны:

Wтр=M/(2*Ry),

Wтр=37.62*106/(2*240)=78380 мм3.

Примем два швеллера 12У по ГОСТ 8240-97 с суммарным моментом сопротивления Wx=101200 мм3.

Проверка прочности:

σ=M/(2*W)y,

σ=37.62*106/(2*101200)=185.9 МПа < Ry=240 МПа.


Рисунок 25. База колонны

Список использованных источников


  1. ГОСТ 1759.4-87. Болты, винты и шпильки. Механические свойства и методы испытания. Государственный комитет СССР по управлению качеством продукции и стандартам. Москва.

  2. ГОСТ 23119-78. Фермы стропильные стальные сварные с элементами из парных уголков для производственных зданий. Технические условия.

  3. ГОСТ 24379.0-80. Болты фундаментные. Общие технические условия. Конструкция и размеры. Москва. 1981 г.

  4. ГОСТ 26020-83. Двутавры стальные горячекатаные с параллельными гранями полок. Сортамент.

  5. ГОСТ 27772-88. Прокат для строительных стальных конструкций. Общие технические условия. Государственный комитет СССР по управлению качеством продукции и стандартам. Москва.

  6. ГОСТ 4121-96. Рельсы крановые. Технические условия. Минск. 1996 г.

  7. ГОСТ 82-70. Прокат стальной горячекатаный широкополосный универсальный. Государственный комитет по стандартам. Москва.

  8. ГОСТ 8509-93. Уголки стальные горячекатаные равнополочные. Сортамент. Межгосударственный совет по стандартизации, метрологии и сертификации. Минск.

  9. Серии I.460.2-10/88. Стальные конструкции покрытий одноэтажных производственных зданий с фермами из парных уголков. 1988 г.

  10. СНиП 2.01.0.7-85*. Нагрузки и воздействия. Нормы проектирования. Министерство строительства Российской Федерации. Москва. 1996 г.

  11. СНиП 23-02-2003. Тепловая защита зданий.

  12. СНиП II-23-81*. Стальные конструкции. Нормы проектирования. Москва. Стройиздат. 1990 г.

  13. СНиП II-26-76. Кровли.

  14. СП 23-101-2004. Проектирование тепловой защиты зданий.

  15. Металлические конструкции. Под редакцией Беленя Е.И. Москва. Стройиздат. 1986 г.

  16. Строительные конструкции: «Металлические конструкции», «Железобетонные и каменные конструкции», «Конструкции из дерева и пластмасс». Учебное пособие «Контроль знаний студентов по курсовому проектированию, экзаменам и зачетам» специальности 290300 «Промышленное и гражданское строительство» всех форм обучения. ИГАСУ. Составители: Малбиев С.А., Телоян А.Л, Лопатин А.Н. Иваново. 2006 г.

  17. Металлические конструкции. Нормативные и справочные материалы для курсового и дипломного проектирования. Телоян А.Л. Иваново. 2005 г.

  18. Статический расчет рам одноэтажных однопролетных производственных зданий. Методические указания по курсовому и дипломному проектированию для специальностей: 1402, 1205. Телоян А.Л. ИИСИ. Иваново. 1985 г.

  19. Расчет и конструирование стальных стропильных ферм. Методическое указание для курсового и дипломного проектирования. Телоян А.Л. ИИСИ. Иваново. 1984 г.

  20. Конструктивные схемы и узлы стальных конструкций одноэтажных производственных зданий. Методические указания для курсового и дипломного проектирования. Альбом №2. Телоян А.Л. ИИСИ. Иваново. 1985 г.

  21. Проектирование и расчет стальных конструкций балочных перекрытий и центрально сжатых колонн. Методические указания к выполнению курсовой работы «Балочное перекрытие рабочей площадки». Телоян А.Л. ИИСИ. Иваново. 1988 г.

  22. Курсовой проект «Стальной каркас одноэтажного производственного здания». Смирнов А. Ю. ИГАСУ. Иваново 2008 г.

  23. Сайт http://dwg.ru/.
1   2   3   4   5   6   7   8   9


написать администратору сайта