СМ в УК.РГЗ. Статистические характеристики случайных величин
Скачать 270.11 Kb.
|
Статистические характеристики случайных величин Задание 1 1.1 Построить вариационный ряд распределения непрерывной случайной величины в виде гистограммы по заданным в таблице значениям. Исходные данные:
Вариационный ряд распределения непрерывной случайной величины:
Представим вариационный ряд распределения непрерывной случайной величины в виде гистограммы: Рис.1 – Вариационный ряд распределения непрерывной случайной величины. 1.2 Определить: среднее арифметическое, моду, медиану; абсолютные и относительные показатели вариации: размах; среднее линейное отклонение; дисперсию; среднее квадратическое отклонение; коэффициент осцилляции; коэффициент вариации; линейный коэффициент вариации. Определим средневзвешанное значение:
; Определим моду: ; где ; ; ; ; ; ; 84,8; Определим медиану: ; Где ; ; ; ; ; =76,6; ; Найдем абсолютные и относительные показатели вариации: 1.Размах: R= Xmax- Xmin; R=36,3; 2.Среднее линейное отклонение: ; 0,57; 3.Дисперсия: ; =338,6; 4.Среднеквадратическое отклонение: ; 18,4; 5.Коэффициент осциляции: ; ; 6.Коэффициент вариации: ; ; 7.Линейный коэффициент вариации: ; ; 1.3 Произвести 20%-ную выборку из данной генеральной совокупности (колонки Х1–Х3, табл. А.1) с помощью таблицы случайных чисел. Для полученной выборки рассчитать среднее арифметическое значение, абсолютные и относительные показатели вариации. Произвели 20%-ную выборку:
Рассчитали среднее арифметическое значение, абсолютные и относительные показатели вариации:
R=99,8-74,3=25,5;
0,04;
=0,2;
0,45;
;
;
; 1.4 Результаты выполненной статистической обработки оформили в виде таблицы. Таблица 1 Результаты статистической обработки данных
|