ответы к экзамену по гистологии. гиста. Структурнохимический состав и молекулярная организация плазмолеммы
Скачать 169.22 Kb.
|
Цитоскелет. Компоненты цитоскелета. Строение, эм, химичиский состав, функцииЦитоскелет представляет собой сложную динамичную систему микротрубочек, микрофиламентов, промежуточных филаментов и микротрабекул. Указанные компоненты цитоскелета являются немембранными органеллами; каждый из них образует в клетке трехмерную сеть с характерным распределением, которая взаимодействует с сетями из других компонентов. Они входят также в состав ряда других более сложно организованных органелл (ресничек, жгутиков, микроворсинок, клеточного центра) и клеточных соединений (десмосом, полудесмосом, опоясывающих десмосом). Основные функции цитоскелета: 1.поддержание и изменение формы клетки; 2.распределение и перемещение компонентов клетки; 3.транспорт веществ в клетку и из нее; 4.обеспечение подвижности клетки; 5.участие в межклеточных соединениях. Микротрубочки - наиболее крупные компоненты цитоскелета. Они представляют собой полые цилиндрические образования, имеющие форму трубочек, длиной до нескольких микрометров (в жгутиках более 50 им) диаметром около 24-25 нм, с толщиной стенки 5 нм и диаметром просвета 14-15 нм Стенка микротрубочки состоит из спиралевидно уложенных нитей - протофиламентов толщиной 5 нм (которым на поперечном разрезе соответствуют 13 субъединиц), образованных димерами из белковых молекул α- и β-тубулина. Функции микротрубочек: 1.поддержание формы и полярности клетки, распределения ее компонентов, 2.обеспечение внутриклеточного транспорта. 3.обеспечение движения ресничек, хромосом в митозе (формируют ахроматиновое веретено, необходимое для клеточного деления), 4.образование основы других органелл (центрнолей, ресничек). Расположение микротрубочек. Микротрубочки располагаются в цитоплазме в составе нескольких систем: а) в виде отдельных элементов, разбросанных по всей цитоплазме и формирующих сети; б) в пучках, где они связаны тонкими поперечными мостиками (в отростках нейронов, в составе митотического веретена, манжетки сперматиды, периферического "кольца" тромбоцитов); в) частично сливаясь друг с другом с формированием пар, или дyблетов (в аксонеме ресничек и жгутиков), и триплетов (в базальном тельце и центриоли). Клеточный центр образован двумя полыми цилиндрическими структурами длиной 0.3-0.5 мкм и диаметром 0.15-0.2 мкм - центриолями, которые располагайся вблизи друг друга во взаимно перпендикулярных плоскостях (рис. 3-15). Каждая центриоль состоит из 9 триплетов частично слившихся микротрубочек (А, В и С), связанных поперечными белковыми мостиками ("ручками"). В центральной часта центриоли микротрубочки отсутствуют (по некоторым данным, здесь имеется особая центральная нить), что описывается общей формулой (9*3) + 0. Каждый триплет центриоли связан со сферическими тельцами диаметром 75 нм - сателлитами-, расходящиеся от них микротрубочки образуют центросферу. В неделящейся клетке выявляется одна пара центриолей (диплосома), которая обычно располагается вблизи ядра. Перед делением в S-периоде интерфазы происходит дупликация центриолей пары, причем под прямым углом к каждой зрелой (материнской) центриоли формируется новая (дочерняя), незрелая процентриоль, в которой вначале имеются лишь 9 единичных микротрубочек, позднее превращающихся в триплеты. Пары ценгриолей далее расходятся к полюсам клетки, а во время митоза они служат центрами образования микротрубочек ахроматинового веретена деления. Реснички и жгутики Реснички и жгутики - органеллы специального значения, участвующие в процессах движения, - представляют собой выросты цитоплазмы, основу которых составляет каркас из микротрубочек, называемый осевой нитью, или аксонемой (от греч. axis - ось и пета - нить). Длина ресничек равна 2-10 мкм, а их количество на поверхности одной реснитчатой клетки может достигать нескольких сотен. В единственном типе клеток человека, имеющих жгутик - спермиях - содержится только по одному жгутику длиной 50-70 мкм. Аксонема образована 9 периферическими нарами микротрубочек и одной центрально расположенной нарой; такое строение описывается формулой (9 х 2) + 2 (рис. 3-16). Внутри каждой периферической пары за счет частичного слияния микротрубочек одна из них (А) полная, а вторая (В) - неполная (2-3 димера общие с микротрубочкой А). Центральная пара микротрубочек окружена центральной оболочкой, от которой к периферическим дублетам расходятся радиальные спицы. Периферические дублеты связаны друг с другом мостиками нексина, а от микротрубочки А к микротрубочке В соседнего дублета отходят "ручки" из белка динеина (см. рис. 3-16), который обладает активностью АТФазы. зальное тельце, по своему строению сходное с цеитриолью, лежит в основании каждой реснички или жгутика. На уровне апикального конца тельца микротрубочка С триплета заканчивается, а микротрубочкн А и В продолжаются в соответствующие микротрубочки аксонемы реснички или жгутика. При развитии ресничек или жутка базальное тельце играет роль матрицы, на которой поисходит сборка компонентов аксонемы. Микрофиламенты Микрофиламенты - тонкие белковые нити диаметром 5-7 нм, лежащие в цитоплазме поодиночке, в виде сетей ими пучками. В скелетной мышце тонкие микрофиламенты образуют упорядоченные пучки, взаимодействуя с более толстыми миознновыми филаментами. Кортикальная (терминальная) сеть - зона сгущения микрофиламентов под плазмолеммой, характерная для большинства клеток. В этой сети микрофиламенты переплетены между собой и "сшиты" друг с другом с помощью особых белков, самым распространенным из которых является филамин. Кортикальная сеть препятствует резкой и внезапной деформации клетки при механических воздействиях и обеспечивает плавные изменения ее формы путем перестройки, которая облегчается актин-растворяющими (преобразующими) ферментами. Актин - основной белок микрофиламентов - встречается в моно-мерной форме (G-, или глобулярный актин), которая способна в присутствии цАМФ и Са2+ полимеризоваться в длинные цепи (F-, или фибриллярный актин). Обычно молекула актина имеет вид двух спирально скрученных нитей (см. рис. 10-9 и 13-5). В микрофиламентах актин взаимодействует с рядом актин-связывающих белков (до нескольких десятков видов), выполняющих различные функции. Некоторые из них регулируют степень полимеризации актина, другие (например, филамин в кортикальной сети или фимбрин и виллин в микроворсинке) способствуют связыванию отдельных микрофиламентов в системы. В немышечных клетках на актин приходится примерно 5-10% содержания белка, лишь около половины его организовано в филаменты. Микрофиламенты более устойчивы к физическим и химическим воздействиям, чем микротрубочки. Функции микрофиламентов: (1)обеспечение сократимости мышечных клеток (при взаимодействии с миозином); (2)обеспечение функций, связанных с кортикальным слоем цито-плазмы и плазмолеммой (экзо- и эндоцитоз, образование псевдоподий и миграция клетки); (3)перемещение внутри цитоплазмы органелл, транспортных пузырьков и других структур благодаря взаимодействию с некоторыми белками (минимиозином), связанными с поверхностью этих структур; (4)обеспечение определенной жесткости клетки за счет наличия кортикальной сети, которая препятствует действию деформаций, но сама, перестраиваясь, способствует изменениям клеточной формы; (5)формирование сократимой перетяжки при цитотомии, завершающей клеточное деление; (6)образование основы ("каркаса") некоторых органелл (микро-ворсинок, стереоцилий). (7)участие в организации структуры межклеточных соединений (опоясывающих десмосом). Микроворсинки - пальцевидные выросты цитоплазмы клетки диаметром 0.1 мкм и длиной 1 мкм, основу которых образуют актиновые микрофиламенты. Мнкроворсинки обеспечивают многократное увеличение площади поверхности клетки, на которой происходит расщепление и всасывание веществ. На апикальной поверхности некоторых клеток, активно участвующих в указанных процессах (в эпителии тонкой кишки и почечных канальцев) имеется до нескольких тысяч микроворсинок, образующих в совокупности щеточную каемку. Каркас каждой микроворсинки образован пучком, содержащим около 40 микрофиламентов, лежащих вдоль ее длинной оси (рис. 3-17). В апикальной части микроворсинки этот пучок закреплен в аморфном веществе. Его жесткость обусловлена поперечными сшивками из белков фимбрина и виллина, изнутри пучок прикреплен к плазмолемме микроворсинки особыми белковыми мостиками (молекулами минимиозина). У основания мнкроворсинки микрофиламенты пучка вплетается в терминальную сеть, среди элементов которой имеются миозиновые филаменты. Взаимодействие актиновых и миозиновых филаментов терминальной сети, вероятно, обусловливает тонус и конфигурацию микроворсинки. Стереоцилии - видоизмененные длинные (в некоторых клетках - ветвящиеся) микроворсинки - выявляются значительно реже, чем микроворсинки и, подобно последним, содержат пучок микрофиламентов. Промежуточные филаменты Промежуточные филаменты - прочные и устойчивые в химическом отношении белковые нити толщиной около 10 нм (что является промежуточным значением между толщиной микротрубочек и микро-филаментов). Они встречаются в клетках разных тканей (см. ниже) и располагаются в виде трехмерных сетей в различных участках цитоплазмы, окружают ядро, входят в состав десмосом и полудесмосом эпителиальных клеток (в плазмолемме которых они закреплены посредством трансмембранных белков), лежат по всей длине отростков нейронов. Промежуточные филаменты образованы нитевидными белковыми молекулами, сплетенными друг с другом наподобие каната. Функции промежуточных филаментов изучены недостаточно; установлено, однако, что они не влияют ни на движение, ни на деление клетки. Ких основным функциям относятся: (1)структурная - поддерживающая и опорная, обеспечение распределения органелл по определенным участкам цитоплазмы; (2)обеспечение равномерного распределения сил деформации между клетками ткани, что препятствует повреждению отдельных клеток (благодаря связи промежуточных филаментов с трансмембранньгми белками десмосом и полудесмосом); (3)участие в образовании рогового вещества в эпителии кожи; в эпителиальных клетках связываются с другими белками и образуют непроницаемые барьеры (роговые чешуйки), являются главным компонентом волос и ногтей; (4)поддержание формы отростков нервных клеток и фиксация трансмембраниых белков (в частности, ионных каналов); (5)удержание миофибрилл в мышечной ткани и прикрепление их к плазмолемме. что обеспечивает их сократительную функцию. Микротрабекулы Микротрабекулы - наименее изученная система цитоскелета, само существование которой оспаривается многими исследователями. Предполагают, что гри описанные выше системы филаментов пронизываются и объединяются некоей четвертой системой, названной микротрабекулярной сетью. Последняя выявляется при высоковольтной электронной микроскопии как система нитей неравномерной толщины (2-10 нм), связывающая три системы цитоскелета, различные органеллы и плазмолемму. В "узлах" микротрабекулярной сети располагаются свободные рибосомы и полисомы. Белок, образующий микротрабекулярную сеть, не идентифшшрован. Высказываются предположения о том, что эта сеть представляет собой артефакт, возникающий в результате преципитации и коагуляции белков при фиксации цитоплазмы клетки. ВКЛЮЧЕНИЯ Включения цитоплазмы - временные ее компонента, обусловленные накоплением продуктов метаболизма клеток. Традиционно подразделяются на трофические, секреторные, экскреторные и пигментные. Трофические включения разделяют в зависимости от природы накапливаемого вещества. Липидные включения встречаются в виде липидных капель (особенно крупных в жировых клетках), которые располагаются в цитоплазме по отдельности или сливаются друг с другом. Их вид на электронно-микроскопических фотографиях варьирует в зависимости от способа фиксации. На гистологических препаратах они обычно имеют вид светлых ("пустых") вакуолей, так как при стандартных методах обработки ткани липиды растворяются. Липидные капли служат источником веществ, используемых в качестве энергетических субстратов; в некоторых клетках (например, продуцирующих стероидные гормоны) они могут содержать субстраты, необходимые для последующего синтеза. Из углеводных трофических включений наиболее распространены гранулы гликогена, представляющего собой полимер глюкозы. Они встречаются в виде плотных гранул диаметром 20-30 нм (β-частиц), которые часто образуют скопления (розетки), называемые α-частицами (см. рис. 3-13). Гранулы гликогена часто расположены вблизи аЭПС и используются в качестве источника энергии. Секреторные включения обычно имеют вид мембранных пузырьков, содержащих секретируемый клеткой продукт; в мембране могут находиться ферменты, осуществляющие конечный процессинг продукта по мере перемещения пузырька к плазмолемме. Избыток невостребованного секреторного продукта поглощается и разрушается в цитоплазме клетки механизмом кринофагии (см. выше). Экскреторные включения по своему строению сходны секреторными, однако они содержат вредные продукты метаболизма, подлежащие удалению из клетки. Пигментные включения представляют собой скопления эндогенных или экзогенных пигментов, которые могут окружаться мембраной. К наиболее распространенным эндогенным пигментам относятся гемоглобин (растворен в цитоплазме эритроцитов, переносит кислород), гемосидерин (продукт обмена гемоглобина, накапливается в макрофагах в виде мелких плотных частиц ферритина), меланин (синтезируется в пигментных клетках - меланоцитах, в которых он накапливается и химически дозревает в окруженных мембраной гранулах - меланосомах), липофусцин (пигмент старения, накапливается в виде мембранных гранул с плотным содержимым, в котором определяются липидные капли). |