Главная страница

Графы, матрицы и вес. Тема Использование информационных моделей (таблицы, диаграммы, графики)


Скачать 2.64 Mb.
НазваниеТема Использование информационных моделей (таблицы, диаграммы, графики)
Дата27.09.2022
Размер2.64 Mb.
Формат файлаdoc
Имя файлаГрафы, матрицы и вес.doc
ТипДокументы
#699798
страница1 из 14
  1   2   3   4   5   6   7   8   9   ...   14

3 (базовый уровень, время – 3 мин)


Тема: Использование информационных моделей (таблицы, диаграммы, графики).
Перебор вариантов, выбор лучшего по какому-то признаку.

Что нужно знать:

  • в принципе, особых дополнительных знаний, кроме здравого смысла и умения перебирать варианты (не пропустив ни одного!) здесь, как правило, не требуется

  • полезно знать, что такое граф (это набор вершин и соединяющих их ребер) и как он описывается в виде таблицы, хотя, как правило, все необходимые объяснения даны в формулировке задания

  • чаще всего используется взвешенный граф, где с каждым ребром связано некоторое число (вес), оно может обозначать, например, расстояние между городами или стоимость перевозки

  • рассмотрим граф (рисунок слева), в котором 5 вершин (A, B, C, D и E); он описывается таблицей, расположенной в центре; в ней, например, число 4 на пересечении строки В и столбца С означает, что, во-первых, есть ребро, соединяющее В и С, и во-вторых, вес этого ребра равен 4; пустая клетка на пересечении строки А и столбца В означает, что ребра из А в В нет








A

B

C

D

Е

A







3

1




B







4




2

C

3

4







2

D

1













Е




2

2









  • обратите внимание, что граф по заданной таблице (она еще называется весовой матрицей) может быть нарисован по-разному; например, той же таблице соответствует граф, показанный на рисунке справа от нее

  • в приведенном примере матрица симметрична относительно главной диагонали; это может означать, например, что стоимости перевозки из В в С и обратно равны (это не всегда так)

  • желательно научиться быстро (и правильно) строить граф по весовой матрице и наоборот

Пример задания:


Р-08. На рисунке справа схема дорог Н-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Определите, какова длина дороги из пункта В в пункт Е. В ответе запишите целое число – так, как оно указано в таблице.



Решение:

  1. для того чтобы определить нужные нам вершины В и Е в весовой матрице, легче всего подсчитать степени вершин, то есть для каждой вершины найти количество рёбер, с которыми она связана (петля – ребро, которое соединяет вершину саму с собой, как кольцевая дорога, считается дважды)

  2. в весовой матрице степень вершины – это количество непустых клеток в соответствующей строке (показаны справа от таблицы на жёлтом фоне), а для изображения графа- количество пересечений небольшой окружности, проведённой около вершины, со всеми рёбрами:



  1. по изображению графа находим, что вершина В имеет степень 5, а вершина Е – степень 4

  2. в таблице есть ровно одна вершина, степень которой 5 (это П6) и одна вершина, степень которой – 4 (П4), их соединяет ребро длиной 20 (эти ячейки выделены в весовой матрице фиолетовым фоном).

  3. Ответ: 20.

  4. Бонус: попытаемся теперь определить, как обозначены остальные вершины в таблице. Каждая из вершин Д (степени 2) и Г (степени 3) соединена с уже известными вершинами В и Е, по таблице находим, что вершина Д – это П7, а вершина Г – это П2. Тогда вершина К соединяется с Е (П4) и Г (П2), то есть К – это П1. А вот различить вершины А и Б по этим данным не удаётся.


  1   2   3   4   5   6   7   8   9   ...   14


написать администратору сайта