Главная страница

безопасность здания. Тема Введение


Скачать 482.62 Kb.
НазваниеТема Введение
Анкорбезопасность здания
Дата25.10.2020
Размер482.62 Kb.
Формат файлаdocx
Имя файлаBezopasnost_zdaniy_i_sooruzheniy.docx
ТипДокументы
#145538
страница1 из 10
  1   2   3   4   5   6   7   8   9   10
ОГНЕСТОЙКОСТЬ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ


Тема № 1. Введение


  1. Пределы огнестойкости металлических конструкций


Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах:

(R10 - R15) для стальных конструкций; (R6 – R8)* для алюминиевых конструкций.

Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.
Примечание: * В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R

15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R 8 (п. 5.4.2 СП 2.13130.2009)
Причина столь быстрого исчерпания незащищенными металлическими конструкциями способности сопротивляться воздействию пожара заключается в больших значениях теплопроводности ( ) и малых значениях теплоемкости с,

что, соответственно, ведет к большим значениям коэффициента

температуропроводности (

a

c

) металла, характеризующего скорость

распространения тепла внутри конструкции (здесь - плотность металла).
Высокая теплопроводность металла практически не вызывает температурного градиента внутри сечения металлической конструкции.
Это приводит к тому, что при пожаре температура незащищенных металлических конструкций быстро достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала до такой величины, что конструкция становится неспособной выдерживать приложенную к ней внешнюю нагрузку, в результате чего наступает предельное состояние конструкции по признаку потере несущей способности (R).

Значения критической температуры Tcr прогрева различных металлических конструкций при нормативной эксплуатационной нагрузке приведены в таблице 1.
Таблица 1

Материал конструкции

Tcr, oC

Сталь углеродистая Ст3, Ст5

470

Низколегированная сталь марки 25Г2С

550

Низколегированная сталь марки 30ХГ2С

500

Алюминиевые сплавы марок АМг-6,

АВ-Т1

225

Алюминиевые сплавы марок Д1Т, Д16Т

250

Алюминиевые сплавы марок B92Т

165


Как видно из таблицы 1 критические температуры для алюминиевых конструкций в 2-3 раза ниже, чем у стальных элементов.

Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций.

  1. Способы повышения пределов огнестойкости металлических конструкций.


К наиболее распространенным способам повышения огнестойкости металлических конструкций относятся:


    1. Облицовка металлических конструкций несгораемыми материалами, имеющими высокие теплозащитные показатели.


В качестве облицовок могут быть использованы бетонные плитки, керамические материалы, штукатурка и т.п. Например, слой штукатурки в 2,5 см повышает предел огнестойкости металлических конструкций до R50. Облицовка в 0,5 кирпича повышает предел огнестойкости металлических конструкций до R 300.
Примечание: Для избежания преждевременного обрушения облицовки при действии огня для бетонных плиток и кирпичной кладки применяют армирование, а штукатурку наносят по металлической сетке (одинарной или двойной в зависимости от толщины наносимого слоя).
Данные облицовки достаточно надежны и долговечны. Однако они существенно увеличивают массу конструкций, а сами операции по облицовке являются достаточно трудоемкими.


    1. Нанесение на поверхность металлических конструкций специальных огнезащитных покрытий (красок и обмазок).


Огнезащитные покрытия при воздействии высокой температуры вспучиваются и теплоизолируют металлическую поверхность. Например, слой такой обмазки толщиной 2-3 мм при воздействии высоких температур вспучивается и на некоторое время создает на поверхности защищаемой металлической конструкции слой пористого материала, толщиной 25-35 мм.

Данный способ огнезащиты позволяет увеличить огнестойкость металлических конструкций до величин R45-R60.


    1. Наполнение полых конструкций водой постоянным или аварийным, естественной или принудительной циркуляцией.


Этот способ повышения огнестойкости используется в основном для защиты уникальных зданий (например – Центр Помпиду, Париж, Франция). Вода имеет большие значения теплоемкости. Поэтому циркуляция воды внутри металлических
конструкций при пожаре обеспечивает интенсивный теплосъем с поверхности металлических конструкций и значительное замедление их прогрева до критических температур.


    1. Орошение металлических конструкций распыленной и тонкораспыленной водой.


Данный способ огнезащиты металлических конструкций основан на охлаждении металлических поверхностей конструкций, нагревающихся в результате воздействия высоконагретых восходящих конвективных потоков, образующихся во время пожара. Распыленная вода также достаточно хорошо экранируют металлические поверхности от лучистых тепловых потоков, распространяющихся из пламенной зоны горения.


    1. Устройство в помещениях защитных подвесных потолков


Для повышения огнестойкости стержневых металлических конструкций, удерживающих покрытия, в частности ферм, наиболее целесообразно применение подвесных потолков монтирующихся из негорючих материалов с высокими теплоизолирующими свойствами, т.к непосредственная огнезащита каждого элемента таким металличсеких конструкций облицовками или вспучивающимися покрытиями весьма трудоемка и недостаточно надежна, так как трудно осуществима в узловых соединениях.

  1. Пределы огнестойкости деревянных конструкций.


В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов:

времени от начала воздействия пожара до воспламенения древесины

воспл и


гор


времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции кр :

f .r

воспл

кр гор

где f .r

- предел огнестойкости деревянной конструкции.

Скорость уменьшения рабочего сечения деревянных конструкций на пожаре составляет от 0,6 до 1,0 мм/мин, поэтому деревянные конструкции, особенно с массивным сечением могут иметь достаточно большие значения пределов огнестойкости.

S1(

  1   2   3   4   5   6   7   8   9   10


написать администратору сайта