безопасность здания. Тема Введение
Скачать 482.62 Kb.
|
ОГНЕСТОЙКОСТЬ СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙТема № 1. Введение Пределы огнестойкости металлических конструкций Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 - R15) для стальных конструкций; (R6 – R8)* для алюминиевых конструкций. Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко. Примечание: * В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R 15 (RE 15, REI 15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R 8 (п. 5.4.2 СП 2.13130.2009) Причина столь быстрого исчерпания незащищенными металлическими конструкциями способности сопротивляться воздействию пожара заключается в больших значениях теплопроводности ( ) и малых значениях теплоемкости с, что, соответственно, ведет к большим значениям коэффициента температуропроводности ( a c ) металла, характеризующего скорость распространения тепла внутри конструкции (здесь - плотность металла). Высокая теплопроводность металла практически не вызывает температурного градиента внутри сечения металлической конструкции. Это приводит к тому, что при пожаре температура незащищенных металлических конструкций быстро достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала до такой величины, что конструкция становится неспособной выдерживать приложенную к ней внешнюю нагрузку, в результате чего наступает предельное состояние конструкции по признаку потере несущей способности (R). Значения критической температуры Tcr прогрева различных металлических конструкций при нормативной эксплуатационной нагрузке приведены в таблице 1. Таблица 1
Как видно из таблицы 1 критические температуры для алюминиевых конструкций в 2-3 раза ниже, чем у стальных элементов. Если возникает необходимость обеспечить огнестойкость металлических конструкций зданий выше, чем R15, то применяют различные способы повышения огнестойкости этих конструкций. Способы повышения пределов огнестойкости металлических конструкций.К наиболее распространенным способам повышения огнестойкости металлических конструкций относятся: Облицовка металлических конструкций несгораемыми материалами, имеющими высокие теплозащитные показатели. В качестве облицовок могут быть использованы бетонные плитки, керамические материалы, штукатурка и т.п. Например, слой штукатурки в 2,5 см повышает предел огнестойкости металлических конструкций до R50. Облицовка в 0,5 кирпича повышает предел огнестойкости металлических конструкций до R 300. Примечание: Для избежания преждевременного обрушения облицовки при действии огня для бетонных плиток и кирпичной кладки применяют армирование, а штукатурку наносят по металлической сетке (одинарной или двойной в зависимости от толщины наносимого слоя). Данные облицовки достаточно надежны и долговечны. Однако они существенно увеличивают массу конструкций, а сами операции по облицовке являются достаточно трудоемкими. Нанесение на поверхность металлических конструкций специальных огнезащитных покрытий (красок и обмазок). Огнезащитные покрытия при воздействии высокой температуры вспучиваются и теплоизолируют металлическую поверхность. Например, слой такой обмазки толщиной 2-3 мм при воздействии высоких температур вспучивается и на некоторое время создает на поверхности защищаемой металлической конструкции слой пористого материала, толщиной 25-35 мм. Данный способ огнезащиты позволяет увеличить огнестойкость металлических конструкций до величин R45-R60. Наполнение полых конструкций водой постоянным или аварийным, естественной или принудительной циркуляцией. Этот способ повышения огнестойкости используется в основном для защиты уникальных зданий (например – Центр Помпиду, Париж, Франция). Вода имеет большие значения теплоемкости. Поэтому циркуляция воды внутри металлических конструкций при пожаре обеспечивает интенсивный теплосъем с поверхности металлических конструкций и значительное замедление их прогрева до критических температур. Орошение металлических конструкций распыленной и тонкораспыленной водой. Данный способ огнезащиты металлических конструкций основан на охлаждении металлических поверхностей конструкций, нагревающихся в результате воздействия высоконагретых восходящих конвективных потоков, образующихся во время пожара. Распыленная вода также достаточно хорошо экранируют металлические поверхности от лучистых тепловых потоков, распространяющихся из пламенной зоны горения. Устройство в помещениях защитных подвесных потолков Для повышения огнестойкости стержневых металлических конструкций, удерживающих покрытия, в частности ферм, наиболее целесообразно применение подвесных потолков монтирующихся из негорючих материалов с высокими теплоизолирующими свойствами, т.к непосредственная огнезащита каждого элемента таким металличсеких конструкций облицовками или вспучивающимися покрытиями весьма трудоемка и недостаточно надежна, так как трудно осуществима в узловых соединениях. Пределы огнестойкости деревянных конструкций.В отличие от металла дерево является горючим материалом, поэтому пределы огнестойкости деревянных конструкций зависят от двух факторов: времени от начала воздействия пожара до воспламенения древесины воспл и гор времени от начала воспламенения древесины до наступления того или иного предельного состояния конструкции кр : f .r воспл кр гор где f .r - предел огнестойкости деревянной конструкции. Скорость уменьшения рабочего сечения деревянных конструкций на пожаре составляет от 0,6 до 1,0 мм/мин, поэтому деревянные конструкции, особенно с массивным сечением могут иметь достаточно большие значения пределов огнестойкости. S1( |