|
Тема 41 Полимеразная цепная реакция
Тема 41: Полимеразная цепная реакция.
Полимеразная цепная реакция с амплификацией праймеров, последующим электрофорезом. ПЦР в реальном времени. Чипы в диагностике наследственных и приобретенных заболеваний.
Цель занятия: ознакомиться с методикой проведения различных вариантов полимеразной цепной реакции.
Перечень знаний и практических навыков:
Охарактеризовать метод ПЦР и основные этапы его развития
Знать стадии полимеразной цепной реакции и основные компоненты реакционной смеси
Уметь производить детекцию результатов ПЦР различными методами
Владеть теоретическими основами контроля качества ПЦР
Описать обработку и хранение биологического материала для генетических исследований
Охарактеризовать основные ошибки ПЦР
Уметь проводить сравнительный анализ результатов ПЦР с другими методами исследований
Знать теоретические основы пиросеквенирования и микрофлюидных технологий
Полимеразная цепная реакция (ПЦР) – экспериментальный метод молекулярной биологии, позволяющий добиться значительного увеличения малых концентраций определённых фрагментов нуклеиновой кислоты (ДНК/РНК) в биологическом материале (пробе).
Открытию полимеразной цепной реакции предшествовало развитие молекулярно-биологических технологий.В 1869г. И. Мишером была открыта ДНК. Биологическая функция нового вещества была не ясна. В 1944г ученые О. Эвери, К. Мак-Леода и М.Мак-Карти провели ряд экспериментов по трансформации бактерий, доказавшие, что за трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Вплоть до 50-х годов XX века точное строение ДНК и способ передачи наследственной информации оставались неизвестными, хотя и было доказано, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов.
Количественные соотношения между различными типами азотистых оснований в составе нуклеотидов ДНК были сформулированы в 1949–1951 гг. группой биохимика Э. Чаргаффа и получили название «правила Чаргаффа». Суть этих правил заключалась в следующем:
1. Количество аденина (А) равно количеству тимина (Т), а гуанина (Г) – цитозину (Ц): А=Т, Г=Ц.
2. Количество пуринов равно количеству пиримидинов: А+Г=Т+Ц.
Правила Чаргаффа, наряду с данными рентгеноструктурного анализа, сыграли решающую роль в расшифровке структуры ДНК и определении принципа комплементарности Дж. Уотсоном и Ф. Криком в 1953 году. Ученые пришли к выводу, что ДНК состоит из двух полимерных цепей, удерживаемых водородными связями между азотистыми основаниями и образующих двойную спираль. При этом азотистые основания формируют парные (комплементарные) комплексы аденин – тимин и гуанин – цитозин при взаимодействии цепей нуклеиновых кислот. Каждая цепь служит матрицей при синтезе новой цепи, а последовательность в синтезируемой цепи задается последовательностью комплементарных оснований цепи – матрицы.
Основы полимеразной цепной реакции (ПЦР)
В 1955г. А. Корнберг открыл фермент, который назвал ДНК-полимеразой. Этот фермент способен удлинять короткие олигонуклеотидные затравки (праймеры), присоединяя к 3'-концу цепи ДНК дополнительный нуклеотид, но для этого необходимо, чтобы праймер был связан с комплементарной цепью ДНК (матрицей). Раствор, в котором происходит эта реакция, должен содержать нуклеозидтрифосфаты (дНТФ), используемые в качестве строительных блоков.
В 1971г. Клеппе и соавт. представили данные, касающиеся состава ингредиентов реакционной смеси, и принципы использования коротких искусственно синтезированных молекул ДНК-праймеров для получения новых копий ДНК.
Однако возможность использования ПЦР в плане наработки большого количества копий нуклеиновых кислот еще не рассматривалась. Это было связано с техническими трудностями, обусловленными необходимостью трудоемкого синтеза праймеров, и нестабильностью фермента. В начале использования метода ПЦР после каждого цикла нагревания – охлаждения ДНК-полимеразу приходилось добавлять в реакционную смесь, так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента.
В 1975г. Т. Брок и Х.Фриз открыли Thermus aquaticus – грамотрицательную палочковидную экстремально термофильную бактерию, а в 1976 г. из нее была впервые выделена Taq-полимераза.
Преимуществом данного фермента была способность стабильно работать при повышенных температурах (оптимум 72-80 °C).
В 1983-1984 гг. К. Мюллис провел ряд экспериментов по разработке ПЦР и первым начал использовать Taq-полимеразу вместо неустойчивой к высоким температурам ДНК-полимеразы. Это позволило ускорить работы по разработке полимеразной цепной реакции. Кроме того, К. Мюллис вместе с Ф. Фалуном разработал алгоритм циклических изменений температуры в ходе ПЦР. Таким образом, сформировался принцип использования ПЦР, как метода амплификации in vitro заданных фрагментов ДНК с полностью или частично известной последовательностью. Результатом открытия ПЦР стало почти немедленное практическое применение метода. В 1985 году Saiki с соавт. опубликовали статью, в которой была описана амплификация геномной последовательности β-глобина. С этого момента количество публикаций, о применении ПЦР в своих работах, стало увеличиваться в геометрической прогрессии.
Особенно бурное развитие метод ПЦР получил благодаря международной программе «Геном человека». Были созданы современные лазерные технологии секвенирования (расшифровки нуклеотидных последовательностей ДНК). Это, в свою очередь, способствовало значительному росту информационных баз данных, содержащих последовательности ДНК различных биологических объектов.
В настоящее время предложены различные модификации ПЦР, показана возможность создания тест-систем для обнаружения микроорганизмов, выявления точечных мутаций, описаны десятки различных применений метода. Таким образом, открытие метода ПЦР стало одним из наиболее выдающихся событий в области молекулярной биологии за последние десятилетия. Это позволило поднять медицинскую диагностику на качественно новый уровень. Механизм полимеразной цепной реакции
Для проведения ПЦР необходимо наличие в реакционной смеси ряда основных компонентов.
Праймеры – искусственно синтезированные олигонуклеотиды, имеющие, как правило, размер от 15 до 30 нуклеотидов, идентичные соответствующим участкам ДНК-мишени. Они играют ключевую роль в образовании продуктов реакции амплификации. Правильно подобранные праймеры обеспечивают специфичность и чувствительность тест-системы и должны отвечать ряду критериев:
Быть специфичными.Особое внимание уделяют 3'-концам праймеров, так как именно с них Taq-полимераза начинает достраивать комплементарную цепь ДНК. Если их специфичность недостаточна, то высока вероятность, что в пробирке с реакционной смесью будут происходить процессы неспецифического связывания, и синтеза фрагментов различной длинны, отличных от искомых. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.
Не должны образовывать димеры и петли, то есть не должно образовываться устойчивых двойных цепей в результате отжига (комплементарного присоединения) праймеров самих на себя или друг с другом.
Область отжига праймеров должна находиться вне зон мутаций, делеций или инсерций в пределах видовой или иной специфичности, взятой в качестве критерия при выборе праймеров. При попадании на такую зону, отжиг праймеров не происходит, и, как следствие, возникает ложноотрицательный результат.
Taq-полимераза – термостабильный фермент, обеспечивающий достраивание З'-конца второй цепи ДНК согласно принципу комплементарности.
Смесь дезоксинуклеотидтрифосфатов (дНТФ) – дезоксиаденозинтрифосфата (дАТФ), дезоксигуанозинтрифосфата (дГТФ), дезоксицитозинтрифосфата (дЦТФ) и дезокситимидинтрифосфата (дТТФ) – «строительный материал», используемый Taq-полимеразой для синтеза второй цепи ДНК.
Буфер – смесь катионов и анионов в определенной концентрации, обеспечивающей оптимальные условия для реакции, а также стабильное значение рН.
Анализируемый образец – подготовленный к внесению в реакционную смесь препарат, который может содержать искомую ДНК, например, ДНК микроорганизмов, служащую мишенью для последующего многократного копирования. При отсутствии ДНК-мишени специфический продукт амплификации не образуется.
Дополнительные компоненты
Для удобства детекции или контроля эффективности амплификации в состав реакционной смеси могут быть включены дополнительные компоненты.
Внутренние контроли – гетерологичный специфическому фрагмент ДНК, как правило, большего размера, ограниченный (фланкированный) специфическими праймерами. Фактически, представляет собой альтернативную матрицу ПЦР и позволяет контролировать эффективность амплификации в каждой конкретной пробирке.
ДНК-зонды – искусственно синтезированные олигонуклеотиды небольшого размера (около 30 нуклеотидов), комплементарные специфическим ампликонам (продуктам реакции). Благодаря прикрепленным к ним изотопным или флуоресцентным меткам ДНК-зонды могут использоваться для детекции продуктов реакции. Циклический температурный режим
Если в анализируемом образце присутствует искомая ДНК, то в процессе реакции амплификации с ней происходит ряд событий, которые обеспечиваются определенными температурными циклами.
Каждый цикл амплификации состоит из трех этапов:
1. Денатурация – это переход ДНК из двухнитевой формы в однонитевую при разрыве водородных связей между комплементарными парами оснований под воздействием высоких температур.
2. Отжиг – это присоединение праймеров к одноцепочечной ДНК-мишени. Праймеры подбирают так, что они ограничивают искомый фрагмент и комплементарны противоположным цепям ДНК. Отжиг происходит в соответствии с правилом комплементарности Чаргаффа. Если это условие не соблюдено, то отжига праймеров не происходит.
3. Элонгация (синтез). После отжига праймеров Taq-полимераза начинает достраивание второй цепи ДНК с 3'-конца праймера. Температуру в реакционной смеси доводят до оптимума работы Taq-полимеразы, которая с максимальной эффективностью начинает синтез второй цепи ДНК от 3'-конца праймера, связанного с матрицей, и движется в направлении от 3' к 5' концу.
Иногда в случае близкого значения температуры отжига праймеров и температуры оптимума работы фермента, становится возможным использовать двухэтапный ПЦР, совместив отжиг и элонгацию. Температурный цикл амплификации многократно повторяется (30 и более раз). На каждом цикле количество синтезированных копий фрагмента ДНК удваивается.
Результатом циклического процесса является экспоненциальное увеличение количества специфического фрагмента ДНК, которое можно описать формулой:
А = М*(2n- n-1)2n,
где А – количество специфических (ограниченных праймерами) продуктов реакции амплификации;
М – начальное количество ДНК-мишеней;
n – число циклов амплификации.
Реальное значение эффективности отдельных циклов амплификации составляет по некоторым данным 78-97%. Если в пробе присутствуют ингибиторы реакции это значение может быть намного меньше, поэтому фактическое количество специфических продуктов амплификации лучше описывает формула:
А = М*(1+Е)n,
где Е – значение эффективности реакции.
Следует заметить, что в процессе амплификации на исходной цепи синтезируются и длинные фрагменты, однако их накопление происходит лишь в арифметической прогрессии по формуле:
К = М*n,
где К – количество длинных продуктов амплификации.
Таким образом, специфические фрагменты, ограниченные на концах праймерами, впервые появляются в конце второго цикла, накапливаются в геометрической прогрессии и очень скоро начинают доминировать среди продуктов амплификации.
«Эффект плато»
Следует заметить, что процесс накопления специфических продуктов амплификации по геометрической прогрессии идет лишь ограниченное время, а затем его эффективность критически падает – «эффект плато».
Термин «эффект плато» используют для описания процесса накопления продуктов ПЦР на последних циклах амплификации, когда количество ампликонов достигает 0,3–1 пмолей. В зависимости от условий и количества циклов реакции амплификации, на момент достижения «эффекта плато» влияют:
Утилизация субстратов (дНТФ и праймеров).
Стабильность реагентов (дНТФ и фермента).
Количество ингибиторов, включая пирофосфаты и ДНК-дуплексы.
Неспецифические продукты и праймер-димеры, конкурирующие за праймеры, дНТФ и полимеразу.
Концентрация специфического продукта за счет неполной денатурации при высокой концентрации ампликонов.
Стадии постановки ПЦР
ПЦР-анализ состоит из трех стадий.
Подготовка пробы биологического материала
Для подготовки пробы к постановке ПЦР используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки реакции амплификации. Иногда достаточным бывает кипячение образца в течение 5–10 минут, однако в большинстве случаев требуются более трудоемкие методы.
Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, предложенная Marmur. Она включает в себя ферментативный протеолиз клеток с последующей депротеинизацией и переосаждением ДНК спиртом. Однако это метод довольно трудоемкий и предполагает работу с такими токсичными веществами, как фенол и хлороформ.
Популярным в настоящее время является метод выделения ДНК, предложенный Boom с соавт. Он основан на использовании для лизиса клеток сильного хаотропного агента – гуанидина изотиоционата (GuSCN) высокой молярности (5М) с последующей сорбцией ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное «молоко» и т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен и технологичен для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок, что имеет большое значение при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР, поэтому при использовании этого метода важны правильный выбор сорбента и тщательное соблюдение технологии.
Следует отметить, что из-за большого количества стадий добавления и удаления растворов при работе с образцом требуется аккуратность, так как возможна перекрестная контаминация между пробами образующейся аэрозолью ДНК.
Другая группа методов пробоподготовки основана на использовании ионообменников, которые, в отличие от стекла, сорбируют не ДНК, а примеси, ингибирующие ПЦР. Как правило, эта технология включает две стадии: кипячение образца, в результате которого клеточные стенки разрушаются, а нуклеиновые кислоты выходят в раствор; и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом.
Тем не менее, встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, клеточные стенки некоторых микроорганизмов не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.
При массовом скрининге, когда важно получить статистические данные, допускается использование простых методов с применением детергентов или обработки биологического материала щелочами с последующей их нейтрализацией. В то же время, использование подобных методов пробоподготовки для клинической диагностики может приводить к ложноотрицательным результатам, вследствие использования в реакционной смеси некачественного препарата ДНК.
Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов. Способы постановки ПЦР
На данный момент разработаны варианты постановки ПЦР, направленные на решение следующих задач: увеличение эффективности реакции и снижение риска образования неспецифических продуктов; реализацию возможности проведения как качественного, так и количественного анализа искомых участков молекулы ДНК/РНК.
Наиболее распространенными в клинико-диагностических лабораториях модификациями ПЦР являются:
ПЦР с «горячим» стартом (hot-start PCR) – модификация, суть которой состоит в предотвращении возможности начала реакции до момента достижения в пробирке условий, обеспечивающих специфический отжиг праймеров. Для этого полимеразная активность фермента в момент постановки ПЦР блокируется антителами или имитирующими антитела небольшими молекулами типа Affibody до наступления первой денатурации (проводится при 95 °C в течение 10 минут).
Кроме того, для предотвращения преждевременного взаимодействия фермента с компонентами реакционной смеси и, как следствие, образования неспецифических продуктов реакции до момента полного прогрева, используется легкоплавкий парафин или специальные масла, отделяющие полимеразу от реакционной смеси.
В зависимости от ГЦ-состава и размера, праймеры имеют определенную температуру плавления Тm, при которой образование водородных связей нестабильно. Если температура системы превышает Тm, праймер не в состоянии удерживаться на цепи ДНК и денатурирует. При соблюдении оптимальных условий, то есть температуры отжига, близкой к температуре плавления, праймер образует двухцепочечную молекулу только при условии его полной комплементарности и таким образом обеспечивает специфичность реакции. Даже если неспецифический отжиг произошел до начала температурного циклирования, в отсутствии фермента элонгации не происходит, а при нагревании комплексы праймер-ДНК денатурируют, поэтому неспецифические продукты не образуются. В дальнейшем температура в пробирке не опускается ниже температуры плавления, что обеспечивает образование специфического продукта амплификации.
Таким образом, ПЦР с «горячим» стартом позволяет минимизировать вероятность образования неспецифических продуктов ПЦР и возможность получения ложноположительных результатов анализа.
ПЦР с обратной транскрипцией (ОТ-ПЦР, RT-PCR) – используется для амплификации, выделения или идентификации известной последовательности РНК. На первом этапе с помощью ревертазы (обратной транскриптазы), используя в качестве матрицы мРНК, проводят синтез одноцепочечной молекулы ДНК (кДНК), которая используется для последующей ПЦР. Для этого применяют обратную транскриптазу, выделенную из двух вирусов: Avian myeloblastosis virus и Moloney murine leukemia virus.
Использование ревертазы связано с некоторыми трудностями. Прежде всего, данный фермент термолабилен и поэтому может быть использован при температуре не выше 42°С. Так как при такой температуре молекулы РНК легко образуют вторичные структуры, то эффективность реакции заметно снижается и по разным оценкам приблизительно равна 5%. Этот недостаток может быть устранен при использовании в качестве обратной транскриптазы термостабильной полимеразы, проявляющей активность в присутствии ионов Мn2+. Это единственный известный фермент, способный проявлять как полимеразную, так и транскриптазную активность.
Для проведения реакции обратной транскрипции в реакционной смеси так же, как и в ПЦР, в качестве затравки должны присутствовать праймеры и смесь 4-х дНТФ.
Возможность использования РНК в качестве мишени для ПЦР существенно расширяет спектр применения этого метода, например, геномы многих вирусов (гепатит С, вирусы гриппа, ВИЧ и т.д.) представлены именно РНК.
ПЦР с анализом результатов «по конечной точке» (End-point PCR) – это модификация метода ПЦР, которая позволяет учитывать результаты реакции по наличию флуоресценции после амплификации, не открывая пробирки. Таким образом, решается одна из основных проблем ПЦР – проблема контаминации ампликонами.
Одним из таких вариантов является метод «FLASH» (FLuorescent Amplification-based Specific Hybridization – специфическая гибридизации в процессе амплификации с ДНК-зондами, меченными флуорофорами).
Ключевым элементом метода «FLASH» является использование гибридизационных олигонуклеотидных зондов, меченных молекулами флуорофора и «темнового» гасителя. Зонды добавляют в реакционную смесь наряду с праймерами и остальными компонентами реакции. Поскольку в структуре зонда флуорофор и гаситель находятся в непосредственной близости друг от друга, то перед началом реакции флуоресценция отсутствует.
Во время реакции зонды гибридизуются с ДНК-мишенью, на стадии элонгации Taq-полимераза разрушает зонд благодаря 5'-экзонуклеазной активности и флуорофор оказывается свободным от гасителя. Таким образом, количество разрушенных зондов и, соответственно, уровень флуоресценции оказываются пропорциональными количеству образовавшихся ампликонов. Следует отметить, что регистрация флуоресценции происходит с помощью детектора флуоресценции после окончания реакции, поэтому метод не является количественным.
ПЦР в режиме «реального времени» (Real-Time PCR, ПЦР-РВ) – используется для одновременной амплификации и измерения количества искомой молекулы ДНК. Преимуществом данного подхода является возможность совмещения детекции и количественного определения специфической последовательности ДНК в образце в реальном времени после каждого цикла амплификации. Для этого используют флуоресцентные красители, интеркалирующие в двуцепочечные молекулы ДНК (интеркаляция возможна в случае, если краситель имеет подходящие размеры и химическую природу и может поместиться между основаниями ДНК) или модифицированные дезоксинуклеотиды, которые флуоресцируют после гибридизации с комплементарными участками ДНК.
Часто ПЦР в реальном времени комбинируют с ОТ-ПЦР для измерения малых количеств мРНК, что позволяет получать количественную информацию о содержании искомой мРНК в клетке и судить об уровне экспрессии гена в отдельной клетке или ткани.
Отличительными чертами ПЦР-РВ являются не только возможность количественного определения ДНК/РНК в исследуемом материале, но и отсутствие стадии электрофореза, что позволяет минимизировать риск контаминации продуктами ПЦР и таким образом резко уменьшить число ложноположительных результатов. Также менее строгие требования предъявляются к организации ПЦР-лаборатории, становятся возможны автоматическая регистрация и интерпретация полученных результатов.
Мультиплексная (мультипраймерная) ПЦР – это одновременная амплификация двух и более последовательностей ДНК в одной пробирке. Преимуществом данного метода является возможность выявления ряда патогенов, генетических модификаций организмов или генотипирования множественных аллелей и т.д., поместив пробу в одну пробирку.
Кроме того, возможны и другие варианты ПЦР, получившие наибольшее распространение в научно-исследовательских лабораториях, например:
Гнездовая («вложенная», англ. nested PCR) ПЦР – применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
ПЦР «инвертированная» – используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для этого проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов.
Ассиметричная ПЦР – проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. Сама ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
Метод молекулярных колоний – данная модификация основана на использовании акриламидного геля, который до начала ПЦР полимеризуют со всеми ее компонентами на поверхности. В процессе реакции в точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
ПЦР длинных фрагментов (англ.Long-range PCR) – вариант ПЦР для амплификации протяженных участков ДНК (10 тысяч и более оснований). Для реализации данного подхода используют смесь двух полимераз, одна из которых – Taq-полимераза с высокой процессивностью (способная за один проход синтезировать длинную цепь ДНК), а вторая – ДНК-полимераза с 3'-5' экзонуклеазной активностью (Pfu- полимераза). Она необходима для корректирования ошибок, внесённых Taq-полимеразой, при этом некомплементарные нуклеотиды удаляются с помощью Pfu-полимеразы.
Групп-специфическая ПЦР (англ. group-specific PCR) – ПЦР с использованием консервативных праймеров к последовательностям ДНК для родственных групп внутри одного или между разными видами. Например, подбор универсальных праймеров к рибосомальным 18S и 26S генам для амплификации видоспецифического межгенного спейсера: последовательность генов 18S и 26S консервативна между видами, поэтому ПЦР между этими генами будет проходить для всех исследуемых видов.
ПЦР с быстрой амплификацией концов кДНК (RACE-PCR)
Иммуно-ПЦР (immuno-PCR-IPCR) |
|
|