Глава 1. Тема основы теории расчета железобетонных конструкций 1 Физикомеханические свойства бетона, арматурных сталей и железобетона
Скачать 443 Kb.
|
1.1.2. Арматура для железобетонных конструкций
Рис. 1.4. Расположение арматуры в изгибаемых (а, б) и сжатых (в) элементах: 1—рабочая арматура; 2—конструктивная арматура; 3—монтажная арматура. Виды арматуры. По назначению различают арматуру рабочую, устанавливаемую по расчету, конструктивную и монтажную, применяемые из конструктивных и технологических соображений. Конструктивная арматура воспринимает не учитываемые расчетом усилия от усадки бетона, изменения температуры, равномерно распределяет усилия между отдельными стержнями и т. п.; монтажная обеспечивает проектное положение рабочей арматуры, объединяет ее в каркасы и т.п. (рис. 1.4). По способу изготовления различают арматуру горячекатаную (получаемую способом проката) — стержневую и холоднотянутую (изготовляемую путем вытяжки в холодном состоянии) — проволочную. По профилю поверхности различают арматурные стали гладкие и периодического профиля (рис. 1.5). Последние обладают лучшим сцеплением с бетоном и в настоящее время являются основной арматурой. По способу применения арматуру делят на напрягаемую и ненапрягаемую. Рис. 1.5. Арматура периодического профиля: а, б — стержневая; в — проволочная Горячекатаная и холоднотянутая арматура называется гибкой. Помимо нее в конструкциях в ряде случаев применяют жесткую (несущую) арматуру из прокатных или сварных двутавров, швеллеров, уголков и т. п. Физико-механические свойства. Эти свойства арматуры зависят от химического состава, способа производства и обработки. В мягких сталях содержание углерода составляет обычно 0,2...0,4 %. Увеличение количества углерода приводит к повышению прочности при одновременном снижении деформативности и свариваемости. Изменение свойств сталей может быть достигнуто введением легирующих добавок. Марганец, хром повышают прочность без существенного снижения деформативности. Кремний, увеличивая прочность, ухудшает свариваемость. Повышение прочности может быть достигнуто также термическим упрочнением и механической вытяжкой. При термическом упрочнении вначале осуществляют нагрев арматуры до 800...900°С и быстрое охлаждение, а затем нагрев до 300...400°С с постепенным охлаждением. При механическом вытягивании арматуры на 3...5 % вследствие структурных изменений кристаллической решетки — наклепа сталь упрочняется. При повторной вытяжке (нагрузке) диаграмма деформирования 4 будет отличаться от исходной (рис. 1.6), а предел текучести существенно повысится.
В зависимости от типа конструкций и условий эксплуатации наряду с основной характеристикой — диаграммой «σ - ε» в ряде случаев необходимо учитывать другие свойства арматурных сталей: свариваемость, реологические свойства, динамическое упрочнение и т. п. Рис. 1.6. Диаграммы деформирования арматурных сталей: 1 — мягких: 2 — низколегированных и термически упрочненных; 3 — высокопрочной проволоки; 4 — механически упрочненных вытяжкой
Классификация арматуры. Все арматурные стали разделяют на классы, объединяющие стали с одинаковыми прочностными и деформативными свойствами. При этом к одному классу могут относиться стали, отличающиеся по химическому составу, т. е. разных марок.
Для дополнительной характеристики стержневой арматуры, необходимой при использовании ее в определенных условиях, к обозначениям классов вводятся индексы. Индекс «С» в обозначении термически и термомеханически упрочненной арматуры указывает на возможность соединения стержней с помощью сварки (At-IVC); «К» — на повышенную стойкость к коррозии под напряжением (Ат-IVK); «СК» — на возможность сварки и повышенную стойкость к коррозии под напряжением (Ат-VCK). Индекс «с» употребляется для арматуры, рекомендуемой к использованию в условиях низких температур, например класса Ас-II из стали марки 10ГТ. Рис. 1.7. Арматурные изделия: 1 — пучок; 2 — анкер; 3 — вязальная проволока; 4 — коротыш
Основные прочностные и деформативные характеристики различных арматурных сталей приведены в табл. 2.2. Сортамент стержней и проволочной арматуры дан на форзаце. Приведенные в сортаменте диаметры горячекатаной арматурной стали периодического профиля соответствуют номинальному диаметру равновеликих по площади круглых гладких стержней. Арматурные изделия. Для ускорения производства работ ненапрягаемая гибкая арматура (отдельные стержни) объединяется в каркасы и сетки, в которых стержни в местах пересечений соединяются контактной точечной сваркой или вязкой. В отдельных случаях допускается применение дуговой сварки.
Плоские каркасы обычно объединяются в пространственные, которые должны обладать достаточной жесткостью для возможности складирования, транспортирования и сохранения проектного положения в форме. При назначении диаметров продольных и поперечных стержней необходимо учитывать условия технологии сварки во избежание пережога более тонких стержней: Диаметры продольных стержней, мм................ 3...10 12...16 18...20 22 25...32 36...40 Наименьшие диаметры поперечных стержней, мм .. 3 4 5 6 8 10
● Сварные сетки можно конструировать, предусматривая их последующее сгибание в одной плоскости на специальных станках. Сетки бывают плоские и рулонные, с продольной и поперечной рабочей арматурой. Рулонные сетки с продольной рабочей арматурой изготовляют при диаметре продольных стержней не более 5 мм (рис. 1.7,б). При диаметре более 5 мм применяют сетки с поперечной рабочей арматурой (рис. 1.7, в) или плоские. Максимальный диаметр поперечных стержней плоских и рулонных сеток 8 мм. Длина сетки в рулоне 50...100 м, поэтому для использования в конструкциях сетки разрезают по месту.
Рис. 1.8. Соединения арматуры Соединения арматуры [6]. Для соединения арматурных стержней по длине в заводских условиях рекомендуется применять контактную стыковую сварку (рис. 1.8, а) на специальных сварочных машинах. Для соединения встык при монтаже используют дуговую сварку. При этом в случае свариваемых стержней d ≥ 20 мм применяют дуговую ванную сварку в инвентарных (медных) формах (рис. 1.8, б). При d < 20 мм дуговую сварку осуществляют с накладками с четырьмя фланговыми швами (рис. 1.8, в). Допускается также сварка односторонними удлиненными швами (рис. 1.8, г). Стык рабочих стержней внахлестку без сварки применяют при d ≤ 36 мм (рис. 1.8, д) в тех местах, где прочность арматуры используется не полностью. Стыки внахлестку не допускаются в растянутых элементах. В местах стыка обязательно устанавливают дополнительные хомуты. Во всех случаях стыки следует делать вразбежку по длине элемента. Стыки внахлестку сварных сеток в рабочем направлении, так же как и стержней, должны иметь длину перепуска l>lan, определяемую по формуле (1.12). Длину нахлестки сетки в направлении распределительной арматуры принимают 50..100 мм в зависимости от диаметра. Применение арматуры в железобетонных конструкциях. Выбор класса арматурных сталей производят в зависимости от типа конструкции, наличия предварительного напряжения, условий возведения и эксплуатации здания. В качестве ненапрягаемой рабочей арматуры применяют в основном сталь класса A-III и проволоку класса Bp-I (B-I) в сетках и каркасах. Арматуру классов A-II и A-I допускают в качестве поперечной арматуры, а в качестве продольной — только при соответствующем обосновании (например, если прочность стали A-III не может быть полностью использована из-за чрезмерного раскрытия трещин и прогибов). Стержневую арматуру класса A-IV и выше применяют в качестве продольной арматуры только в вязаных каркасах. В качестве напрягаемой рабочей арматуры при нормальных условиях эксплуатации и длине железобетонных элементов до 12 м используют преимущественно стаяли классов Ат-VI и Aт-V, а также В-II, Вр-II, К-7, К-19, A-IV, A-V, A-VI, А-IIIв, для элементов длиной более 12 м — главным образом арматурные канаты, пучки, проволоку классов В-II, Вр-II, а также свариваемую арматуру A-VI, A-V, A-IV и А-IIIв. 1.1.3. Железобетон Сцепление арматуры с бетоном. Сцепление арматуры с бетоном является одним из фундаментальных свойств железобетона, которое обеспечивает его существование как строительного материала. Сцепление обеспечивается: склеиванием геля с арматурой; трением, вызванным давлением от усадки бетона; зацеплением за бетон выступов и неровностей на поверхности арматуры. Выявление влияния каждого из этих факторов затруднительно и не имеет практического значения, так как они действуют совместно. Однако наибольшую роль в обеспечении сцепления (70...80 %) играет зацепление за бетон выступов и неровностей на поверхности арматуры (рис. 1.9, а). При выдергивании стержня из бетона (рис. 1.9,6) усилия с арматуры на бетон передаются через касательные напряжения сцепления τbd, которые распределяются вдоль стержня неравномерно. Наибольшие их значения τbd,max действуют на некотором расстоянии от торца элемента и не зависят от длины заделки стержня в бетонеlan. Для оценки сцепления используют средние напряжения на длине заделки Рис. 1.9. Сцепление арматуры с бетоном Для обычных бетонов и гладкой арматуры τbd,m = 2,5...4 МПа, а для арматуры периодического профиля τbd,m ≈7 МПа. С увеличением прочности бетона τbd,m возрастает. Выражая продольное усилие через напряжение в арматуре (см. рис. 1.9, б), из формулы (1.10) получают Из формулы (1.11) видно, что длина заделки, при которой обеспечивается сцепление (зона анкеровки), должна быть тем больше, чем выше прочность арматуры и диаметр стержня, и может быть уменьшена при увеличении τbd,m. Для уменьшения 1an (в целях экономии металла) следует ограничивать диаметр растянутой арматуры, повышать класс бетона и применять арматуру периодического профиля. Нормами проектирования значение сцепления не устанавливается, но даются рекомендации по конструированию, которые обеспечивают надежное сцепление арматуры с бетоном. Анкеровка арматуры в бетоне. Анкеровка — это закрепление концов арматуры внутри бетона или на его поверхности, способное воспринять определенное усилие. Анкеровка может осуществляться либо силами сцепления, либо специальными анкерными устройствами на концевых участках, либо теми и другими совместно. Анкеровка арматуры периодического профиля обеспечивается силами сцепления. Анкерные устройства на концах такой арматуры применяют в редких случаях. Для гладкой круглой арматуры, наоборот, сцепление недостаточно, и устройство крюков на концах стержней или приварка поперечных стержней на концевых участках, как правило, обязательны. Ненапрягаемую арматуру периодического профиля заводят за нормальное к продольной оси элемента сечение, в котором она учитывается с полным расчетным сопротивлением, на длину зоны анкеровки где Δλan — коэффициент запаса; ωan— коэффициент условий работы; в соответствии с нормами [1] lan,min = 20...25 см. Формула (1.12) - эмпирическая. Усадка бетона в железобетонных конструкциях. Стальная арматура вследствие сцепления ее с бетоном является внутренней связью, препятствующей свободной усадке бетона при твердении на воздухе и свободному набуханию бетона при твердении в воде. Стесненная деформация усадки бетона в железобетонном элементе приводит к возникновению начальных напряжений: растягивающих в бетоне, сжимающих в арматуре. При достаточно высоком содержании арматуры в бетоне элемента могут возникнуть усадочные трещины. Усадке бетона в статически неопределимых железобетонных конструкциях препятствуют лишние связи. В таких системах усадка рассматривается как внешнее воздействие (подобное температурному), вызывающее появление усилий в элементах (см. рис. 11.4). Средняя деформация усадки равна 15·10-5, что равносильно понижению температуры на 15°С (так как коэффициент линейной температурной деформации αbt≈1·10-5). Это позволяет заменить расчет на действие усадки расчетом на температурное воздействие. Отрицательное влияние усадки в этом случае может быть снижено путем устройства деформационных швов, которые обычно совмещают с температурными и называют температурно-усадочными. В предварительно напряженных элементах усадка бетона также оказывает отрицательное влияние, приводя к уменьшению предварительного напряжения в арматуре. |