Главная страница
Навигация по странице:

  • Атмосфера

  • 2

  • +

  • Литосфера

  • Экосистемой

  • биогеоценоз

  • фитоценоза

  • Биоценозы

  • биосфера . Биомы

  • Фотосинтез

  • первичную продукцию

  • первичной продуктивностью

  • консументы

  • Фитофаги

  • автотpофами

  • тpофическими

  • гипердинамия и недоедание

  • природной очаговости

  • Экология. ЭКОЛОГИЯ_конспект. Теоретические основы курса "экология" биосфера и человек


    Скачать 0.64 Mb.
    НазваниеТеоретические основы курса "экология" биосфера и человек
    АнкорЭкология
    Дата01.04.2023
    Размер0.64 Mb.
    Формат файлаdoc
    Имя файлаЭКОЛОГИЯ_конспект.doc
    ТипДокументы
    #1029357
    страница1 из 4
      1   2   3   4

    ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КУРСА "ЭКОЛОГИЯ"

    1. БИОСФЕРА И ЧЕЛОВЕК


    1.1. Основные понятия экологии

    Экология – это наука, изучающая взаимоотношения организмов между собой и с окружающей средой. В середине ХХ века экологию стали понимать как науку об экосистемах и биосфере.

    Выделяют три основные ветви экологии.

    Первая ветвь. Общая экология, или биоэкология, – это изучение взаимоотношений живых систем разных рангов (организмов, популяций, экосистем) со средой и между собой. Эту часть экологии в свою очередь подразделяют на следующие разделы:

    • аутэкологию, т. е. изучение закономерности взаимоотношений организмов отдельного вида со средой обитания;

    • демэкологию, или экологию популяций

    Популяция в экологическом учении – совокупность особей одного вида, более или менее длительно занимающая определённое пространство и воспроизводящая себя в течение большого числа поколений;

    • синэкологию, т. е. экологию сообществ;

    • экосистемную и биосферную экологию.

    Вторая ветвь. Геоэкология – это изучение геосфер, их динамики и взаимодействия, геофизических условий жизни, факторов неживой окружающей среды, действующей на организмы.

    Третья ветвь. Прикладная экология – это аспекты инженерной, социальной, экономической охраны среды обитания человека, проблем взаимоотношений природы и общества, экологических принципов охраны природы.

    1.2. Структура биосферы

    Биосфера (в современном понимании) – своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.
    Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы.

    Атмосфера – наиболее легкая оболочка Земли, которая граничит с космическим пространством; через атмосферу осуществляется обмен вещества и энергии с космосом. Атмосфера имеет несколько слоёв: тропосфера – нижний слой, примыкающий к поверхности Земли (высота 9–17 км). В нём сосредоточено около 80% газового состава атмосферы и весь водяной пар; стратосфера; ионосфера – там “живое вещество” отсутствует. Преобладающие элементы химического состава атмосферы: N2(78%), O2(21%), CO2 (0,03%).

    Гидросфера – водная оболочка Земли. Вследствие высокой подвижности вода проникает повсеместно в различные природные образования, даже наиболее чистые атмосферные воды содержат от 10 до 50 мг/л растворимых веществ. Преобладающие элементы химического состава гидросферы: Na+, Mg2+, Ca2+, Cl-, S, C. Главной особенностью океанической воды является то, что основные ионы характеризуются постоянным соотношением во всём объёме мирового океана.

    Литосфера – внешняя твёрдая оболочка Земли, состоящая из осадочных и магматических пород. В настоящее время земной корой принято считать верхний слой твёрдого тела планеты, расположенный выше сейсмической границы Мохоровичича.

    Поверхностный слой литосферы, в котором осуществляется взаимодействие живой материи с минеральной (неорганической), представляет собой почву. Остатки организмов после разложения переходят в гумус. Составными частями почвы служат минералы, органические вещества, живые организмы, вода, газы.

    Преобладающие элементы химического состава литосферы: O, Si, Al, Fe, Ca, Mg, Na, K. Ведущую роль выполняет кислород, на долю которого приходится половина массы земной коры и 92% её объёма, однако кислород прочно связан с другими элементами в главных породообразующих минералах [Коробкин, 2003].

    Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени.

    Одним из фундаментальных правил, которым подчиняются все экосистемы, является принцип Ле Шателье – Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.

    По определению В.Н.Сукачева, биогеоценоз – это совокупность однородных природных элементов (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий) на определённом участке поверхности Земли. Контур биогеоценоза устанавливается по границе растительного сообщества (фитоценоза).

    Термины "экологическая система" и "биогеоценоз" не являются синонимами. Экосистема – это любая совокупность организмов и среды их обитания, в том числе, например, горшок с цветком, муравейник, аквариум, болото, пилотируемый космический корабль. У перечисленных систем отсутствует ряд признаков из определения Сукачёва, и в первую очередь элемент "гео" – Земля. Биоценозы – это только природные образования. Однако биоценоз в полной мере может рассматриваться как экосистема. Таким образом, понятие "экосистема" шире и полностью охватывает понятие "биогеоценоз", или "биогеоценоз" – это частный случай "экосистемы". Самая крупная природная экосистема на Земле – это биосфера.

    Биомы – наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли (пустынные, травянистые, лесные); водные экосистемы – основные экосистемы, существующие в водной сфере (гидросфере). Иногда в литературе встречается близкая, но менее четкая классификация, прежде всего, выделяющая влажные тропические леса, саванны, пустыни, степи, леса умеренного пояса, хвойные (тайгу), тундру [Одум, 1975].

    Фотосинтез – химический процесс, идущий в зеленых растениях под действием световой энергии с образованием из двуокиси углерода и воды глюкозы с выделением кислорода как побочного продукта.

    Энергетические затраты связаны, прежде всего, с поддержанием метаболических процессов, которые называют тратой на дыхание, меньшая часть идёт на рост, а остальная часть пищи выделяется в виде экскрементов. В конечном итоге вся эта энергия превращается в тепловую и рассеивается в окружающей среде, а на следующий более высокий трофический уровень передаётся не более 10% энергии от предыдущего.

    Основой фоpмиpования и функционpования биогеоценозов, а следовательно и экосистем, являются продуценты – pастения и микpооpганизмы, способные производить (пpодуциpовать) из неорганического вещества органическое, используя энергию света или химические реакции. Они выделяют чистую первичную продукцию, обусловленную приростом биомассы, и валовую первичную продукцию, в которую входит общее количество продуцируемой в ходе фотосинтеза органики, включая энергию, израсходованную на жизнедеятельность (например, на дыхание и выделение ароматических веществ).

    При этом первичной продуктивностью называют биомассу, а также энергию и летучие биогенные вещества, производимые продуцентами на единице площади за единицу времени.

    В отличие от продуцентов, образующих первичную продукцию экосистем, оpганизмы, использующие эту продукцию, получили название гетеpотpофы. Они используют для фоpмиpования своих оpганов готовое органическое вещество других организмов и продукты их жизнедеятельности.

    Гетеротрофностью обладают консументы – потpебители живого оpганического вещества, к которым относятся фитофаги и зоофаги. Консументы определяют вторичную биологическую продукцию – биомасса, а также энергия и биогенные летучие вещества, производимые всеми консументами (гетеротрофами) на единице площади за единицу времени.

    Фитофаги – травоядные – вторичные аккумулятоpы солнечной энеpгии, пеpвоначально накопленной pастениями.

    Зоофаги – хищники, поедающие фитофагов и более мелких хищников.

    Пpодуценты, использующие для пpодуциpования оpганического вещества солнечную энеpгию называются автотpофами, а использующие химическую энеpгию – хемотpофами.

    Сапpофаги – животные, поедающие тpупы и экскременты.
    Связи пpи котоpых одни оpганизмы поедают дpугие оpганизмы или их останки или выделения (экскременты) называются тpофическими. При этом пищевые взаимоотношения между членами экосистемы выражаются через трофические (пищевые) цепи [Одум, 1975].

    Жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть её теряется в виде тепла.

    Рассмотрим процесс обмена энергией. Энергию определяют, как способность производить работу. Свойства энергии описываются законами термодинамики.

    Первый закон (начало) термодинамики, или закон сохранения энергии, утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создаётся заново.

    Второй закон (начало) термодинамики, или закон энтропии, утверждает, что в замкнутой системе энтропия может только возрастать.

    Применительно к энергии в экосистемах используется следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования (или мера изменения упорядоченности, которая происходит при деградации энергии), есть энтропия. Чем выше упорядоченность системы, тем меньше ее энтропия.

    Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии (энергия Солнца); во вторых, способности за счёт устройства составляющих её компонентов эту энергию улавливать и концентрировать, а использовав – рассеивать в окружающую среду.

    Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение её энтропии.

    1.3. Взаимоотношения организма и среды

    Среда обитания – это природное окружение живого организма. Важные для жизни организма компоненты окружающей среды, с которыми он неизбежно сталкивается, называются экологическими факторами. Эти факторы могут быть необходимы или вредны для живых существ, способствовать или препятствовать выживанию и размножению.

    1.3.1. Типы экологических взаимодействий

    Все многообразие взаимоотношений между организмами можно разделить на два основных типа: антагонистические и неантагонистические.

    Антагонистические – это такие отношения, при которых организмы двух видов подавляют друг друга или один из них подавляет другой без ущерба для себя. Основные формы этого вида биотических отношений: хищничество, паразитизм и конкуренция.

    Хищничество – форма взаимоотношений организмов разных трофических уровней, при которой один вид организмов живёт за счёт другого, поедая его.

    Паразитизм – межвидовые взаимоотношения, при которых один вид живёт за счёт другого, поселяясь внутри или на поверхности тела организма – хозяина.

    Конкуренция – форма взаимоотношений, при которых организмы одного трофического уровня борются за пищу и другие условия существования, подавляя друг друга.

    Основные формы неантагонистических взаимодействий: симбиоз, мутуализм и комменсализм.

    Симбиоз (сожительство) – это обоюдовыгодные, но необязательные взаимоотношения разных видов организмов.

    Мутуализм (взаимный) – взаимовыгодные и обязательные для роста и выживания отношения организмов разных видов.

    Комменсализм (сотрапезник) – взаимоотношения, при которых один из партнеров извлекает выгоду, а другому они безразличны.

    1.3.2. Круговорот веществ

    Большой круговорот веществ в природе (геологический) обусловлен взаимодействием солнечной энергии с глубинной энергией Земли и перераспределяет вещества между биосферой и более глубокими горизонтами Земли. Некоторое количество веществ может на время выбывать из биологического круговорота (осаждаться на дне океана, морей, выпадать в глубины земной коры). Но большой круговорот – это и круговорот воды между сушей и океаном через атмосферу.

    Малый круговорот веществ в биосфере (биогеохимический) совершается лишь в пределах биосферы. Сущность его – в образовании живого вещества из неорганического в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения.

    Химические элементы образуют замкнутую систему (цикл), в которой атомы используются многократно. Суть цикла в следующем: химические элементы, поглощённые организмом, впоследствии его покидают, уходя в абиотическую среду, затем, через какое–то время, снова попадают в живой организм и т.д. Такие элементы называют биофильными [Ананьева, 2001].

    1.3.3. Экологические факторы

    Экологические факторы – движущая сила, причина какого–либо процесса, явления – любой элемент окружающей среды, способный прямо или косвенно влиять на живой организм, хотя бы на одном из этапов его индивидуального развития, называют экологическим фактором.
    Экологические факторы среды принято делить на две группы:

    1. факторы косной (неживой) природы – абиотические или абиогенные;

    2. факторы живой природы – биотические или биогенные.

    Абиотические факторы – это совокупность факторов неорганической среды, влияющих на жизнь и распространение организмов. Их делят на физические, химические и эдафические.

    Физические факторы – это те, источник которых – физическое состояние или явление (механическое, температурное воздействие и др.), химические происходят от химического состава среды (солёность воды, содержание кислорода и др.), эдафические (почвенные) – это совокупность химических, физических и механических свойств почв и горных пород, оказывающие воздействие как на организмы почвенной биоты, так и на корневую систему растений (влияние влажности, структуры почв, содержания гумуса и т. п. на рост и развитие растений).

    Всё живое, окружающее организм в среде обитания, составляет биотическую среду. Биотические факторы – это совокупность влияний жизнедеятельности одних организмов на другие.

    Биотические факторы способны влиять на абиотическую среду, создавая микроклимат или микросреду: например, в лесу летом прохладнее и влажнее, а зимой – теплее. Но микросреда может иметь и абиотическую природу: под снегом, в результате его отепляющего действия, выживают мелкие животные (грызуны), сохраняются всходы озимых злаков.

    Антропогенные факторы – факторы, порождённые человеком и воздействующие на окружающую среду (загрязнение, эрозия почв, уничтожение лесов и т. д.).

    В начале 70-х годов XX в. американский биолог и эколог Барри Коммонер обобщил системность в экологии в виде четырёх законов. Их соблюдение – обязательное условие любой деятельности человека в природе.




    Биотические факторы, воздействующие на растения как первичные продуценты органического вещества, подразделяют на зоогенные и фитогенные.

    Живое неотрывно от среды. Среда – одно из основных экологических понятий, которое означает весь спектр окружающих организм элементов и условий в той части пространства, где обитает организм, всё то, среди чего он живёт и с чем непосредственно взаимодействует. При этом организмы, приспособившись к определённому комплексу конкретных условий, в процессе жизнедеятельности сами постепенно изменяют эти условия, т. е. среду своего существования.

    Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы.

    Для жизни организмов необходимо определённое сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором.

    Первоначально было установлено, что развитие живых организмов ограничивает недостаток какого-либо компонента, например, минеральных солей, влаги, света и т.п. В середине XIX века немецкий химикорганик Юстас Либих в 1840 г. первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве. Он назвал это явление законом минимума; в честь автора его ещё называют законом Либиха:



    Однако, как выяснилось позже, лимитирующим может быть не только недостаток, но и избыток фактора, например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т.п.

    Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввёл американский зоолог В. Шелфорд в 1913г., сформулировавший закон толерантности:


    Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения.

    Максимально и минимально переносимые значения фактора – это критические точки, за пределами которых существование организма или популяции уже невозможно. В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом.

    Виды, для существования которых необходимы строго определенные экологические условия, называют стенобионтными (форель, орхидея), а виды, приспосабливающиеся к экологической обстановке с широким диапазоном изменения параметров, – эврибионтными (мыши, крысы, тараканы).

    1.3.4. Состав среды

    Состав водной среды. Большая часть поверхности Земли покрыто водой. Распространение и жизнедеятельность организмов в водной среде в значительной степени зависят от её химического состава. Тем не менее, проблемы, связанные с водой, возникают даже у водных организмов.

    Состав воздуха. Состав воздуха в современной атмосфере находится в состоянии динамического равновесия, зависящего от жизнедеятельности живых организмов и геохимических явлений глобального масштаба.

    Состав почв представляет собой продукт физического, химического и биологического преобразования горных пород, включающей твёрдые, жидкие и газообразные компоненты.

    Содержание воды в почве. Общее количество воды, которое может быть удержано почвой, складывается из гравитационной, физически связанной, капиллярной, химически связанной и парообразной воды.

    Содержание воздуха в почве. Поры почвы, не занятые водой, заполняет почвенный воздух. Насыщенность воздухом играет важную роль в почвенных процессах. По сравнению с составом атмосферного воздуха из-за дыхания организмов с глубиной уменьшается содержание кислорода (до 10%) и увеличивается концентрация диоксида углерода (достигая 19%).

    В процессе исторического развития живые организмы освоили четыре среды обитания. Первая – вода. В воде жизнь зародилась и развивалась многие миллионы лет. Вторая – наземно-воздушная – на суше и в атмосфере возникли и бурно адаптировались к новым условиям растения и животные. Постепенно преобразуя верхний слой суши – литосферы, они создали третью среду обитания – почву, а сами стали четвёртой средой обитания [Акимова, 2001].

     1.4. Экология и здоровье человека

    1.4.1. Влияние природно-экологических факторов на здоровье человека


    Изначально Homo Sapiens был подвержен тем же факторам регуляции и саморегуляции экосистемы, что и весь животный мир. Главными из ограничивающих факторов были гипердинамия и недоедание. Среди причин смертности на первом месте стояли патогенные воздействия природного характера. Особое значение среди них имели инфекционные болезни, отличающиеся, как правило, природной очаговостью.

    Суть природной очаговости в том, что возбудители болезней, её переносчики и хранители существуют в данных природных условиях (очагах) вне зависимости от того, обитает здесь человек или нет. Человек может заразиться от диких животных (грызунов, птиц, насекомых и др.), проживая в этой местности постоянно или случайно оказавшись здесь. Природно-очаговые болезни являлись основной причиной гибели людей вплоть до начала ХХ в.

    Заболевания, связанные с окружающей человека природной средой, существуют и в настоящее время, хотя с ними ведется постоянная борьба. Это объясняется, в частности, причинами сугубо экологической природы, например, резистентностью носителей возбудителей и самих возбудителей болезней.

    Высокая смертность людей от инфекционных болезней обусловила достаточно медленный рост численности населения – первый миллиард жителей на Земле появился лишь в 1860 г. Открытия Пастера и др. в конце XIX в. дали мощный толчок развитию профилактической медицины, что улучшило санитарно-гигиенические условия жизни и привело к резкому снижению заболеваемости природно-очаговыми болезнями, а некоторые из них практически исчезли в ХХ в.

    1.4.2. Влияние социально–экологических факторов на здоровье человека

    Искусственная среда также требует адаптации к себе, которая происходит через болезни. Причины возникновения болезней в этом случае следующие: гиподинамия, переедание, информационное изобилие, психоэмоциональный стресс. С медико-биологических позиций наибольшее влияние социально–экологические факторы оказывают на следующие тенденции:

     

    Эти тенденции в различной степени характерны практически для всех местообитаний человека, но наиболее рельефно они выступают в условиях городской среды.
      1   2   3   4


    написать администратору сайта