Главная страница
Навигация по странице:

  • Почему руки и ноги не сгибаются так же, как позвоночник

  • 1. Почему коренные зубы называют еще жерновыми 2. Как вы думаете , каких зубов больше у акулы у коровы Почему

  • Как старейшина мог узнать, кто совершил кражу

  • Что нужно сделать, чтобы при минимальных затратах увеличить продажу ножей

  • Махмутов. Проблемное обучение. Теория проблемного обучения


    Скачать 448 Kb.
    НазваниеТеория проблемного обучения
    АнкорМахмутов. Проблемное обучение.doc
    Дата04.05.2017
    Размер448 Kb.
    Формат файлаdoc
    Имя файлаМахмутов. Проблемное обучение.doc
    ТипДокументы
    #6856
    страница2 из 6
    1   2   3   4   5   6
    ГЛАВА II. ПРОБЛЕМНАЯ ЗАДАЧА

    (1. Сущность проблемной задачи

    В предыдущей главе мы говорили о том, что одновременно с исследованиями проблемной ситуации шли поиски дидактических средств, позволяющих с достаточной вероятностью создавать проблемные ситуации в реальном процессе обучения. Одним из таких средств стала проблемная задача. Она и будет предметом обсуждения в данной главе. Рассмотрим несколько примеров.

    В 3-м классе на уроках природоведения изучается тема „Организм человека и охрана здоровья“. Учебник содержит информацию о строении человека, его коже, зубах, скелете, мышцах, органах пищеварения, дыхания, кровообращения, чувств, о нервной системе, сердце и т.п.1 Тексты сопровождаются описаниями практических работ, вопросами, заданиями и т.д. Приведем в качестве примеров несколько вопросов из учебника.

    К тексту „Скелет“: Какова роль скелета человека? Назовите основные части скелета. Назовите орган, расположенный внутри черепа. Какие органы предохраняет грудная клетка?

    К тексту „Мышцы и их значение“: Каково значение мышц в организме человека? Как изменяется мышца при сокращении? Чем мышцы прикрепляются к костям?

    К тексту „Зубы и уход за ними“: Сколько зубов во рту взрослого человека? Как называются разные зубы? Чем покрыты зубы сверху? Отчего зубы могут разрушаться? Почему надо ухаживать за ними?

    К тексту „Органы пищеварения“: Для чего человеку нужна пища? Почему необходимо пережевывать пищу? Как питательные вещества попадают во все органы тела? К текстам „Органы кровообращения“, „Сердце и его тренировка“: Из чего состоят органы кровообращения? Что приводит в 

    ____________________

    1 См.: Мельчаков Л. Ф., Скаткин М. Н. Природоведение: Учеб. для 3–4 кл. сред. шк. - 3-е изд., перераб. - М.: Просвещение, 1987. - С.117–143.


    движение кровь? Как работает сердце? Когда сердце отдыхает? Как оказать помощь при сильном кровотечении?

    Все эти вопросы направлены на то, чтобы, прочитав учебник или выслушав объяснение учителя, дети могли воспроизвести информацию, которую они поняли и запомнили. В действие включаются такие познавательные процессы, как внимание, восприятие, память, представление. Но можно ли утверждать, что, отвечая на эти вопросы, дети мыслят? воображают? Скорее всего - нет. Почему? Потому что вопросы носят репродуктивный характер и не включают школьников в состояние умственного затруднения, противоречия. Иначе говоря, вопросы не создают проблемной ситуации. Очевидно, что без репродуктивных вопросов в обучении не обойтись, так как они позволяют контролировать степень понимания и усвоения школьниками информации, фактического материала. Известно, что „пустая голова не рассуждает“ (П.П. Блонский). Однако нельзя обходиться и только репродуктивными вопросами.

    Представим себе, что, кроме указанных, к текстам даны следующие пояснения и вопросы.

    К текстам „Мышцы и их значение“, „Скелет“:

    Тело человека может быть очень гибким. Например, гимнасты сильно изгибают свой позвоночник, делая „мостик“. Спина в это время изгибается, как дуга. Руки человека сгибаются только в плечах, локтях, кисти, а ноги - только в бедре, колене, стопе.


    Почему руки и ноги не сгибаются так же, как позвоночник?

    К тексту „Зубы и уход за ними“:

    У человека есть несколько видов зубов: восемь резцов, четыре клыка; остальные двадцать зубов называются коренными, или жерновыми, от слова „жернов“. Жернов - это каменное приспособление, которое применяется на мельницах для перемалывания, перетирания зерен в муку. Ответьте на два вопроса:


    1. Почему коренные зубы называют еще жерновыми?


    2. Как вы думаете , каких зубов больше у акулы? у коровы? Почему?

    К тексту „Органы пищеварения“: в одном племени произошла кража. О воре ничего не было известно, кроме того, что это женщина. На помощь позвали старейшину племени. Он собрал всех женщин, велел каждой держать во рту горсть сухого риса, а через несколько минут заглянул каждой в рот и указал воровку.


    Как старейшина мог узнать, кто совершил кражу?

    К тексту „Органы кровообращения“:

    1. Вы уже знаете, что легкие, желудок, мозг, печень, почки и т.д. находятся в разных местах организма человека. Каким же образом кровь может обслуживать органы, которые находятся в разных местах?

    2. Кровь - жидкость. И вода - жидкость. Кровь находится в человеке, как вода в сосуде. Однако вода в сосуде неподвижна. Кровь же движется, например, от желудка к мозгу. Почему движется кровь в организме человека?

    3. Кровь находится в нашем организме, как жидкость в сосуде. Известно, что в этом „сосуде“ есть два вида крови: кровь свежая, богатая кислородом, и уже использованная кровь, бедная кислородом. Почему они не смешиваются?

    Эти и подобные им тексты и представляют собой проблемные задачи. Их основная особенность состоит в том, что они вызывают у субъекта, школьника состояние осознаваемого им противоречия между знанием и незнанием, выходом из которого может стать только решение задачи. Это состояние и есть проблемная ситуация.

    Таким образом, проблемная задача есть специальная дидактическая конструкция, имеющая целью создание проблемной ситуации.

    В последние десятилетия различные аспекты проблемной задачи освещались в работах психологов - А.В. Брушлинского, В.В. Давыдова, М.И. Кругляка, А.М. Матюшина, Д.Б. Эльконина; дидактов - Д.В. Вилькеева, И.Я. Лернера, М.И. Махмутова, М.Н. Скаткина; методистов - М. А. Беляева, Н.Г. Дайри, М.К. Ковалевской, Н.М. Колягина, Н.И. Кудряшева, Т.В. Напольновой, Л.Е. Стрельцовой и др. Следует отметить, что большинство этих исследований посвящено проблемной задаче в старших классах и по преимуществу предметам гуманитарного цикла. Составлены сборники задач по различным учебным дисциплинам: по русскому языку (Т.В. Напольнова), литературе (Б.М. Бим-Бад, С.И. Брызгалова, Л.Е. Стрельцова), обществоведению (Е.И. Соседова), истории (И.Л. Лернер), физике (Л.А.  Иванова, Р.И. Малафеев) и др. Меньше внимания уделено разработке проблемных задач в начальной школе. Правда, в последние годы появились работы В.В. Лялина, Г. Остера, Н.А. Погореловой, А.А. Сайлибаева, П.М. и Б.П. Эрдниевых, С.З. Якупова и др., рассматривающие проблемную задачу на материале природоведения и математики в младших классах. Анализ позволяет выделить несколько аспектов проблемной задачи, к которым обращено внимание исследователей.

    Во-первых, понятия „проблема“, „проблемная ситуация“, „проблемная задача“, „проблемный вопрос“ частью исследователей не разграничиваются: они либо отождествляются, либо в одни и те же термины вкладывается различное наполнение.

    Во-вторых, нет единства и в выборе термина, обозначающего задачу. Она именуется:

    1) „проблемно - познавательной задачей“ (А.И. Назарец, А.А. Сайлибаев);

    2) „поисковой познавательной задачей“ (М.А. Беляев, В.И. Загвязинский, Э.Г. Мингазов, И.Я. Лернер, М.Н. Скаткин);

    3) „познавательной задачей“ (С.И. Высоцкая, Т.В. Напольнова, Н.М.  Плескацевич, Л.Е. Стрельцова, С.З. Якупов);

    4) „проблемной задачей“ или „познавательной задачей“, отождествляемой с „проблемой“ (А.В. Брушлинский, Т.В. Кудрявцев, К.А. Славская);

    5) „проблемным вопросом“, „проблемным заданием“, „проблемным упражнением“, отождествляемым с „познавательной задачей“ (А.И. Назарец, Г. Цумме).

    Эта терминологическая разноголосица вызвана сложностью самого предмета споров, и каждый из предлагаемых терминов указывает на какую-то важную сторону задачи. Так, термин „познавательная задача“ указывает на ее дидактическую цель; „поисковая познавательная задача“ - на творческий характер учебной деятельности; „проблема“ - на содержательную сторону изучаемого материала (его противоречивость); „проблемный вопрос“, „проблемное задание“, „проблемное упражнение“ - на возможные формы предъявления проблем и т.д.

    Несмотря на терминологические разногласия, все исследователи согласны в одном: в процессе решения „познавательной“ („проблемно - познавательной“, „поисково - познавательной“) задачи („вопроса“, „упражнения“, „задания“) учащиеся самостоятельно приходят к новым знаниям или способам их получения, то есть поиск способа решения или само решение возлагается на учащихся. Думается, что рассматриваемое понятие следует обозначить термином „проблемная задача“. „Задача“ - потому, что так называется вид заданий, в которых есть условие и вопрос. „Проблемная“ - потому, что данное определение к слову „задача“ соотносится с главной категорией проблемного обучения - проблемной ситуацией.

    (2. Структура проблемной задачи

    В структуре проблемной задачи выделяются следующие составные элементы: 1) условия, или данные, известные учащимся и указывающие на какие-то параметры решения; 2) неизвестное, искомое, нахождение которого приводит к новым знаниям или способам действия (С.З. Якутов).

    Важнейшим признаком проблемной задачи является наличие противоречия в ее содержании.

    Второй элемент (неизвестное) может быть сформулирован по-разному. Одна из форм - вопросительное предложение (примеры см. выше). Другая форма - побудительное предложение (задание). Например, в 3-м классе на уроке природоведения предлагается проблемная задача, неизвестное в которой выражено в форме побудительного предложения: „Измерьте длину тени от гномона (метрового шеста) в полдень 21 декабря. Докажите, что 21 декабря - самый короткий день в году“ (Н.А. Погорелова). Здесь известное и неизвестное не расчленены разными предложениями: в последнем предложении сообщается, что 21 декабря - самый короткий день в году, и в то же время спрашивается о видимых доказательствах этого факта. Кроме того, условие содержит некоторые параметры решения данной задачи: чтобы найти доказательства, надо установить связь между длиной тени от гномона и долготой дня.

    На третью форму указывает И.Я. Лернер: в тексте задачи может быть предъявлено только неизвестное без условия в расчете на то, что учащиеся имеют знания, которые могли бы составить условие задачи. Пример (6 кл., тема „Понятие о причастии“): „Можно ли о собаке, бродящей по лугу, сказать, что она бродячая? Почему?“ Задача дается ученикам до изучения темы, и дети должны уловить в ней временный и постоянный характер признака, обозначаемый двумя словами. Условие же здесь „лишнее“, так как предполагается, что дети знают точное значение слова „бродячая“ (бездомная, не имеющая хозяина).

    И все-таки следует учесть, что в начальной школе предпочтительнее задачи с условием, так как его отсутствие может привести к ухудшению „проблемного видения“.

    (3. Типология проблемной задачи

    И здесь имеется несколько подходов. Так, А.А. Сайлибаев строит свою типологию на основе степени самостоятельности учащихся, необходимой при решении задач. Он выделяет два типа задач: 1) проблемно - познавательные (большая самостоятельность) и 2) репродуктивно - познавательные (меньшая самостоятельность).

    Иной подход предлагает М.П. Пальянов. Он разделяет проблемные задачи („задания“) на: 1) требующие установления отношений между элементами знаний; 2) требующие определения различий в сходных ситуациях; 3) требующие различного применения определительного объекта (понятия, модели, образа); 4) требующие установления зависимости построения объекта; 5) имеющие несколько решений или позволяющие получить решение разными способами; 6) требующие преобразования, сочетания известных способов и получения нового способа; 7) задачи, решение которых возможно известным ученику способом, но имеется более эффективный способ, не лежащий на „поверхности“. Недостаток данной типологии состоит в том, что под нее не подведено единое логическое основание, из-за чего некоторые типы задач дублируют друг друга. Так, при решении задач третьего и четвертого типов нельзя обойтись без установления какого-либо отношения между элементами знаний (а это первый тип задач). Другие исследователи (А.Ф. Эсаулов, С.Ф. Жуйков и др.) логическим основанием для деления задач на типы считают дидактические цели. Опираясь на это основание, А.Ф. Эсаулов предлагает следующую типологию: 1) задачи для изучения нового; 2) задачи для закрепления изложенного учителем материала; 3) задачи для самостоятельного приобретения новых знаний; 4) задачи для контроля. Сходную классификацию предлагает С.Ф. Жуйков: 1) задачи, характерные для приобретения знаний и умений; 2) задачи для закрепления пройденного материала. На основе этих общедидактических классификаций можно составлять проблемные задачи по частным дидактикам.

    Наиболее продуктивной оказалась общедидактическая типология, предложенная И.Я.  Лернером. Он делит задачи по двум основаниям:

    1) проблемно - содержательному и 2) методам науки, применяемым при решении задач.

    К проблемно - содержательным относятся задачи:

    - на установление причинно - следственных связей;

    - на выяснение тенденций развития данного явления;

    - на определение сущности явления и др.

    К построенным на основании общенаучных методов исследователь относит задачи с применением:

    - сравнительного метода;

    - метода аналогий;

    - описательного метода и др.

    Сегодня имеется несколько частно - дидактических типологий задач (см. выше). Очень интересные задачи по математике предлагают В.А. Крутецкий, Д. Пойа, Д.М. Гришин и др. Особое место занимают задачи по математике для 2–4 классов, предлагаемые Г. Остером2. Они остроумны, затейливы, умело учитывают особенности психологии младшего школьника. Л.С. Рубинштейн говорил, что проблемная ситуация может начинаться с чувства удивления, - Г. Остер „начинает“ ее с чувства юмора.

    Приведем примеры задач Г. Остера.

    „На одной жужаре к нам прижакали 70 лямзиков, а на другой - на три лямзика больше. Сколько лямзиков прижакали к нам на обеих жужарах?“

    „Хор, состоящий из 280 мальчиков и 105 девочек, исполняет задушевную песню. К счастью, лишь четвертая часть мальчиков и третья часть девочек орет во все горло, остальные только открывают рот. Найди разность между мальчиками и девочками, орущими во все горло.“

    „Рост Кати 1м 75 см. Вытянувшись во весь рост, она спит под одеялом, длина которого 155 см. Сколько сантиметров Кати торчит из - под одеяла?“

    „40 бабушек ехали кататься на мотоциклах. Впереди на мотоцикле без глушителя ехала в одиночестве самая шустрая бабушка, за ней мчались три мотоцикла с колясками, на каждом их которых поместилось по три бабушки, а сзади их догоняли остальные мотоциклы. На отставших мотоциклах сидело по две бабушки. Сколько всего мотоциклов было у бабушек?“

    Психолого - дидактичекий анализ таких задач еще впереди, так же как и изобретательских задач Ю.И. Соломатина3. Наш опыт показывает, что некоторые изобретательские задачи способны решать и младшие школьники, причем с помощью исследовательского метода в форме мозгового штурма. Приводим примеры таких задач (адаптировано нами).

    1. Одна американская фирма выпускала ножи для чистки картофеля. Лезвие делалось из стали, а ручка - из пластмассы самых ярких цветов. Хозяйки охотно покупали эти ножи, и фирма процветала. Но наступил момент, когда картофельные ножи появились в каждой американской семье. Их перестали покупать, и доходы фирмы резко сократились.


    Что нужно сделать, чтобы при минимальных затратах увеличить продажу ножей?

    (Сделать ручки из серой пластмассы под цвет картофеля: хозяйки начнут быстро терять ножи в очистках).

    2. Одно министерство располагалось в многоэтажном здании, где работал один лифт. На площадках перед дверьми лифта утром и вечером стоя-

    ____________________

    2 См.: Остер Г. Б. Задачник: Ненаглядное пособие.- М.: Росмэн, 1993.

    3 См.: Соломатин Ю. И. Как стать изобретателем.- М.: Просвещение, 1990.

    ли очереди из работников министерства. Люди теряли время, нервничали и ссорились.

    Что нужно сделать, чтобы без больших затрат исправить ситуацию? (Повесить на стенах у входов в лифт зеркала).

    (4. Система проблемных задач.

    Некоторые исследователи считают, что проблемные задачи по каждому учебному предмету должны представлять собой систему. Под системой понимается заданная программа, выполнение которой обеспечивает знание проблем, свойственных наукам, способов их решения и порядок обязательных действий, без которых простая совокупность задач не решается, как бы увлекательны и интересны они ни были. Система задач должна отвечать некоторым обязательным показателям. И.Я. Лернер выделяет пять показателей, которые должна содержать система:

    1) основные типы аспектных проблем, характерных для данной науки и предусмотренных школьной программой, т.е. учебных проблем;

    2) важные для среднего образования типы методов данной науки;

    3) формировать основные черты творческой деятельности;

    4) строиться по принципу постепенного усложнения;

    5) учитывать дидактическое требование последовательности и повторяемости задач.

    Обязательными для системы являются показатели 1-й, 2-й и 4-й. Адаптируя эти показатели системы к обучению младших школьников, Н.А.  Погорелова предлагает следующие условия системы проблемных задач (речь идет о задачах по природоведению, но очевидно, что предлагаемые условия системы задач применимы ко всем учебным предметам в начальной школе): 1) усложнение содержания изучаемого материала; 2) повышение уровня обобщения этого материала; 3) увеличение объема знаний, которыми должен владеть ученик, чтобы решить проблемную задачу.

    Итак, „усложнение“, „повышение“, „увеличение“. Речь идет, видимо, не столько о признаках системы, сколько о последовательном возрастании уровней сложности проблемных задач.

    (5. Уровни сложности проблемных задач

    Как определить уровень сложности проблемной задачи? Известно несколько подходов. Одни исследователи определяют ее в зависимости от количества неизвестных задачи, количества данных, количества понятий, вводимых для ее решения (А.Ф. Эсаулов); другие - степенью обобщенности знаний (А.И. Матюшкин); третьи - процентом учащихся, решивших задачу, когда сложность является величиной, обратно пропорциональной количеству правильных решений (Ц.Л. Рупина).

    Наиболее продуктивной является точка зрения И.Л. Лернера. Сложность задачи обусловлена тремя факторами:

    а) составом условия: чем больше в нем данных, которые нужно учесть при решении задачи, тем она сложнее;

    б) расстоянием между вопросом задачи и ответом на нее, т.е.

    числом суждений, логических звеньев, необходимых для решения

    задачи (ведущий фактор сложности);

    в) составом решения, т.е. числом выводов, которые можно сделать в результате решения задачи.

    В каждой задаче совмещаются все три фактора сложности. Это позволяет построить таблицу сложности.

    И условие, и состав решения, и расстояние между условием и решением включают в себя обычно не более четырех элементов, и тогда таблица сложности проблемных задач принимает следующий вид:

    1. А2Б1В1

    2. А3Б1В1

    3. А4Б1В1–2

    4. А2Б1В2–3

    5. А3Б1В2–3

    6. А4Б1В1–2

    7. А2Б1В4

    8. А3Б1В4

    9. А4Б1В4

    10. А2Б2–3В1

    11. А3Б2–3В1

    12. А4Б2–3В1

    13. А2Б2–3В2–3

    14. А3Б2–3В2–3

    15. А4Б2–3В2–3

    16. А2Б2–3В4

    17. А3Б2–3В4

    18. А4Б2–3В4

    19. А2Б4В1

    20. А3Б4В1

    21. А4Б4В1

    22. А2Б4В2–3

    23. А3Б4В2–3

    24. А4Б4В2–3

    25. А2Б4В4

    26. А3Б4В4

    27. А4Б4В4

    А - состав условия; Б - расстояние между вопросом и ответом; В- состав решения.

    По вертикали таблицы идет наращение сложности такого показателя, как состав условия (А), поскольку он остается неизменным при варьировании других показателей. Точно так же возможен набор вариантов сочетания показателей сложности по отношению к показателю Б, к показателю В.

    Пользуясь таблицей, нетрудно построить задачу любой степени сложности в зависимости от исходного основания. Рассмотрим несколько конкретных проблемных задач (на примере природоведения) и определим их тип и уровень сложности. Напомним, что одна из существующих типологий проблемных задач (И.Я. Лернер) строится по двум основаниям: проблемно-содержательному и методам науки, применяемым при решении задач.

    Пример 1.

    З а д а ч а. Мальчик занимался спортом: каждое утро он пробегал 3 км. Однако на соревнованиях по метанию мяча он занял последнее место. Как это могло случиться? Что бы вы посоветовали ему делать?

    О т в е т. При беге сильно напрягаются одни и те же мышцы - мышцы ног. Другие же мышцы мальчик не тренировал, а при метании мяча нужны сильные руки. Можно посоветовать мальчику давать нагрузку разным мышцам: подтягиваться, отжиматься, качать пресс, делать наклоны.

    Данная задача является проблемной, так как в ее содержание включено противоречие между сообщаемым фактом и сложившимися у школьников представлениями (спорт делает людей сильными, но мальчик, который каждый день занимался спортом, на соревнованиях оказался самым слабым).

    Условие задачи содержит в себе следующие данные: мальчик занимался бегом и участвовал в соревнованиях по метанию мяча, в которых потерпел поражение (два компонента).

    Неизвестное: почему мальчик оказался слабым? Как можно исправить это положение? (два компонента).

    Для ответа на вопрос нужно выстроить следующую логическую цепочку: 1) мальчик занимался только бегом, следовательно, он напрягал мышцы ног; 2) при метании мяча нужны сильные мышцы рук, мальчик же их не тренировал; 3) следовательно, ему нужно тренировать мышцы рук. Для этого следует подтягиваться, отжиматься, качать пресс; 4) необходимо тренировать все мышцы тела (четыре элемента).

    Обобщим сказанное.

    По проблемно - содержательному основанию это задача на определение сущности явления. По методам науки - на установление причин по следствиям. По степени сложности она относится к 22-му уровню (А2Б4В2). Если определять сложность этой задачи по подкритериям, разработанным специально для задач по природоведению (А.Н. Погорелова), то картина получается следующая:

    - по подкритерию „а“ (усложнение содержания учебного материала) - задача, отражающая условия жизни, которые влияют на строение и развитие;

    - по подкритерию „б“ (повышение уровня обобщения знаний) - задача, содержанием которой служит природоведческое представление;

    - по подкритерию „в“ (увеличение объема знаний, которыми необходимо владеть для решения) - задача, для решения которой необходимы два промежуточных „знания“: что такое мышцы; определенные физические упражнения дают нагрузку на определенные группы мышц.

    Пример 2.

    З а д а ч а. Тело человека может быть очень гибким. Например, гимнаст сильно изгибает свой позвоночник, делая „мостик“. Спина при этом принимает форму дуги. Почему же руки и ноги человека сгибаются не в любом месте, а только в трех: руки - в плече, локтях, кисти; ноги - в бедре, колене, стопе?

    О т в е т. В бедре, колене, стопе, плече, локте, кисти находятся места соединения костей (суставы). Здесь кости соединены подвижно и могут перемещаться, а в промежутках (например, между коленом и стопой) находятся цельные, прочные и несгибаемые кости.

    Проблемная ли это задача? Да, так как в ее содержании заключено противоречие между практическими наблюдениями и необходимостью их теоретического обоснования. Это задача на установление причинно - следственных связей. При ее решении необходимо применение такого метода науки, как установление причин по следствиям.

    Каков уровень сложности задачи? В условии - два компонента: позвоночник изгибается в нескольких местах, а руки и ноги в трех (А2). Ответ содержит один компонент: руки и ноги сгибаются только в местах соединения костей (В1). Промежуточных звеньев - три: позвоночник гибкий потому, что он состоит из мелких костей, позвонков, которые гибко соединены между собой; кости рук и ног гибко соединены только в трех местах; потому руки и ноги сгибаются только в трех местах (Б3). Следовательно, задача относится к 10-му уровню сложности (А2Б3В1), а по критериям сложности природоведческих задач она может быть описана следующим образом:

    - по подкритерию „а“ - задача на изучение внешних свойств частей тела;

    - по подкритерию „б“ - задача, содержанием которой служат природоведческие понятия (кости рук, ног, позвоночника; сухожилия, связки);

    - по подкритерию „в“ - задача, для решения которой понадобятся три „промежуточных“ знания: знание того, что такое позвоночник; знание свойств костей; знание строения позвоночника, рук и ног.

    (6. Условия составления проблемных задач

    Этой проблемой занимались многие исследователи. Наиболее приемлемой при обучении младших школьников нам представляется точка зрения А.А. Сайлибаева:

    1. Любое понятие или обобщение, связанное с каким-либо предыдущим понятием межтемной или внутритемной связью, может быть изучено посредством решения задач (репродуктивных или проблемных);

    2. На простых линейных связях в большинстве случаев конструируются задачи репродуктивного характера, задачи же проблемного характера строятся на сложных связях.

    3. Изучение содержания нового материала с помощью проблемных задач невозможно в тех случаях, когда: а) оно является совершенно новым и не имеет связи с ранее изученным материалом; б) когда его нельзя представить как последовательность взаимосвязанных вопросов, приводящих к новым знаниям; в) когда в их содержании нет противоречия.

    4. Составляя задачи к конкретному уроку, целесообразно исходить из структурных этапов этого урока.

    (7. Процесс решения задачи

    Психологи, исследуя процесс творческого решения задачи, выделяют три основных его момента: 1) осознание проблемы; 2) ее разрешение; 3) проверку полученных результатов (А.Я. Пономарев, 1964). Более глубокое изучение процесса решения задачи позволило выделить новые его этапы. Так, И.Я. Лернер, Т.В. Напольнова, Л.Е. Стрельцова и др. на втором этапе (решение задачи) выделяют три самостоятельных подэтапа:

    - расчленение задачи на данное и искомое (осознание имеющихся данных и вопроса);

    - выявление зависимости между данными и вопросом. При этом часто возникает необходимость выдвинуть гипотезу и спланировать ее проверку;

    - осуществление решения.

    Дальнейшее дробление этапов решения привело к тому, что, к примеру, В.И. Загвязинский, Д.М. Гришин выделяют в процессе решения задачи девять этапов и подэтапов, А.А. Столяр - 13. На наш взгляд, процесс решения задачи на уроке выглядит следующим образом: 1) предъявление задачи учителем; 2) возникновение проблемной ситуации (осознание фактов, данных в тексте задачи, как противоречивых); 3) выход из проблемной ситуации (решение):

    Вариант А (индукция)

    Вариант Б (дедукция)

    1. Объяснение обнаруженного

    противоречия (гипотеза).

    1. Ответ.

    2. Доказательство (проверка

    гипотезы).

    2. Доказательство правильности

    ответа.

    3. Ответ.

    С процессом решения проблемной задачи тесно связан способ ее решения. Собственно говоря, этих способов три: проблемная задача полностью решается самим учителем с соблюдением всех этапов решения (проблемное изложение); решение выполняется учащимися под руководством учителя через систему проблемно ориентированных вопросов (эвристическая беседа); вся задача или ее часть решается школьниками в форме самостоятельного исследования (исследовательский метод). Способы решения проблемных задач (методы проблемного обучения) будут исследованы в следующих главах.

    И последний вопрос, который следует рассмотреть в связи с предметом обсуждения, - как строить процесс обучения с применением проблемных задач.

    Выскажем несколько соображений.

    1. Проблемная задача может применяться на любом этапе урока: при проверке домашнего задания, при актуализации изученного материала, при изучении нового материала, при его закреплении.

    2. Специальные исследования показывают, что на решение одной задачи расходуется от 1–2 до 15 минут (И.Я. Лернер).

    3. В связи с этим возникает вопрос: сколько проблемных задач можно применять на одном уроке? Наблюдение показывает, что задач не может быть более семи. Причины носят объективный характер: урок продолжается 35–45 минут. И количество задач на одном уроке должно быть ограничено. Есть и причина психологического характера. Дж. Миллер4 исследовал пределы способности человека удерживать и перерабатывать полученную информацию. Оказалось, что эти пределы определяются „магическим числом 7(2“ (7(2 цифр, слов, правил; это может быть и 7(2 проблемные задачи). Укажем, что специальные исследования оптимального количества проблемных задач в рамках одного урока еще не проводились.

    Подведем итоги.

    1. Проблемная задача - специальная дидактическая конструкция, состоящая из условия и вопроса (побуждение к действию, задание и т.п.).

    2. Особенностью задачи является ее проблемность. Объективная проблемность выражается в противоречивости информации, содержащейся в тексте задачи. Осознание школьниками объективной противоречивости этой информации приводит к особому субъективному психическому состоянию, называемому проблемной ситуацией.

    3. Потребность выйти из проблемной ситуации побуждает школьников к решению задачи. Решение выполняется с различной степенью познавательной самостоятельности.

    4. Результатом решения являются либо новые знания, либо новые способы деятельности, либо то и другое.

    Список рекомендуемой литературы

    1. Гришин Д. М. О видах и структуре учебных задач // Советская педагогика.- 1961.- № 3.

    2. Загвязинский В. И. О постановке и разрешении познавательных задач в учебном процессе: Метод. реком.- Тюмень, 1973.

    3. Лернер И. Я. Опыт применения познавательных задач в V классе // Преподавание истории в школе.- 1967.- № 1.

    4. Лернер И. Я. Познавательные задачи в обучении истории: Материалы к опытной работе учителей.- М.: Просвещение, 1968.

    5. Лернер И. Я. Поисковые задачи в обучении как средство развития творческих способностей // Научное творчество / Под ред. С.Р. Микулинского и М.Г. Ярошевского.- М.: Наука, 1969.

    6. Лернер И. Я. Факторы сложности познавательных задач // Новые исследования в педагогических науках.- М.: Педагогика, 1970.- Вып.1 (XIV).

    7. Напольнова Т. В. Познавательные задачи в обучении русскому языку: Указания для опытной работы учителя.- М.: Просвещение, 1968.

    8. Погорелова Н. А. Элементы проблемного обучения на уроках природоведения // Воспитание и развитие детей в процессе обучения природоведению / Сост. Л.Ф. Мельчаков.- М.: Просвещение, 1981.

    9. Познавательные задачи в обучении гуманитарным наукам / Под ред. И.Я. Лернера.- М.: Педагогика, 1972.

    10. Пойа Д. Как решать задачу.- М.: Педагогика, 1961.

    11. Пойа Д. Математическое открытие.- М.: Наука, 1970.

    ____________________

    4 См.: Миллер Дж. Магическое число семь плюс или минус два: О некоторых пределах нашей способности перерабатывать информацию // Инженерная психология.- М.: Прогресс, 1964.

    12. Рупина Ц. Л. Применение познавательных задач при обучении гуманитарным предметам // Советская педагогика.- 1981.- № 1.

    13. Стрезикозин В. П. В чем же суть „проблемного обучения“? // Начальная школа.- 1973.- № 6.

    14. Стрельцова Л. Е. Познавательные задачи по литературе и способы обучения их решению: Автореф. дис. канд. пед. наук. - М., 1972.

    15. Эрдниев П.М., Эрдниев Б. П. Теория и методика обучения математике в начальных классах.- М.: Педагогика, 1988.

    16. Эсаулов А. Ф. Психология решения задач.- М.: Высшая школа, 1972.

    1   2   3   4   5   6


    написать администратору сайта