Главная страница
Навигация по странице:

  • 8.6. Надземные трубопроводы

  • Эксплуатация скважин. Учебное пособие Эксплуатация. Томский политехнический университет экСплуатация магистральных газОнефтепроводов и хранилищ


    Скачать 2.57 Mb.
    НазваниеТомский политехнический университет экСплуатация магистральных газОнефтепроводов и хранилищ
    АнкорЭксплуатация скважин
    Дата24.05.2022
    Размер2.57 Mb.
    Формат файлаdocx
    Имя файлаУчебное пособие Эксплуатация.docx
    ТипДокументы
    #546464
    страница9 из 20
    1   ...   5   6   7   8   9   10   11   12   ...   20

    Рис. 8.2. Схема подводного перехода





    К подготовительным работам относятся: геодезические и гидрометрические работы, связанные с промерами глубин в створе перехода и определением скоростей потока, планового положения траншей; подготовка спускных дорожек; футеровка и балластировка трубопровода и т.д. Трубопроводы, подготовленные к укладке под воду, размещают обычно на берегу на специальных спусковых дорожках, которые служат для спуска трубопровода с берега в подводную траншею. Выбор типа дорожки зависит от вида грунта и веса трубопровода. Трубопроводы футеруют деревянными рейками для предохранения изоляции от повреждений при укладке. Балластировка трубопровода производится при его положительной плавучести в заполненном продуктом состоянии. Балластировку выполняют чугунными и железобетонными отдельными грузами и в виде сплошных покрытий бетоном или асфальтобетоном.

    Трубопровод, расположенный в подводной траншее, подвергается воздействию различных нагрузок. Под устойчивым состоянием подводного трубопровода понимается такое состояние, при котором он будет находиться в покое при самой неблагоприятной комбинации силовых воздействий, стремящихся вывести его из устойчивого положения. Такими силами и воздействиями являются: выталкивающее усилие, определяемое по закону Архимеда, горизонтальная и вертикальная составляющие гидродинамического воздействия потока, силы упругости трубопровода, сжимающее или растягивающее продольное усилие, возникающее при протаскивании трубопровода или воздействие изменения его температурного режима и внутреннего давления. Условие устойчивости не засыпанного грунтом трубопровода на сдвиг записывается в виде:

    , (8.15)

    где Рх – горизонтальная составляющая силового воздействия потока; kус – коэффициент устойчивости на сдвиг, принимаемый равным 1,15; Б – вес балласта в воде; Q – вес единицы длины трубы с учётом изоляции, футеровки и продукта, заполняющего трубу; kув – коэффициент устойчивости на всплытие, принимаемый равным 1,1; А – выталкивающая Архимедова сила; Ру – вертикальная составляющая силового воздействия потока; qи – сила, возникающая вследствие упругого изгиба трубопровода по заданной кривой; qн – сила, обусловленная наличием продольной растягивающей силы в искривленном трубопроводе при его протаскивании по дну траншеи; fтр – коэффициент трения трубопровода о грунт, принимаемый равным .

    Вес балласта на единицу длины трубопровода может быть установлен по выше приведенной формуле. Основные расчётные случаи:

    1. Трубопровод прямолинейный, течение отсутствует

    (8.16)

    2. Трубопровод прямолинейный при наличии течения

    (8.17)

    3. Трубопровод искривлен по профилю перехода, течение отсутствует

    (8.18)

    4. Трубопровод искривлен по профилю перехода при наличии течения

    (8.19)

    5. Общий случай (при протаскивании)

    . (8.20)

    Если Б окажется отрицательным, то балластировка не требуется, при положительной Б трубопровод нужно балластировать.

    В этих формулах сила qи определяется по формуле:

    (8.21)

    где EJ жесткость трубы; f – стрелка прогиба искривленного участка трубопровода; lкр – длина криволинейного участка подводного перехода.

    Сумма сил определится следующим образом:

    , (8.22)

    где Тр – расчётное тяговое усилие при протаскивании трубопровода (определяется методом последовательного приближения).

    При строительстве подводных переходов выполняют значительный объём земляных работ, связанных с устройством траншей. Эти работы ведутся с помощью специальных землеройных машин. Береговые траншеи разрабатывают с помощью одноковшовых экскаваторов, оборудованных обратной лопатой. Русловая часть перехода разрабатывается земснарядами. Время окончания земляных работ должно, как правило, совпадать с временем окончания подготовки трубопровода к укладке в подводную траншею, чтобы не произошло заиливание траншей.

    При глубине водоёмов не более 23 м и незначительной их ширине (до 200 м) для устройства траншеи в русловой части можно использовать экскаватор, установленный на барже или понтоне соответствующей грузоподъёмности. Широко распространена на практике разработка подводных траншей канатно-скреперными установками.

    Ширину подводных траншей по дну следует назначать с учётом режима водной преграды, методов разработки траншеи, необходимости водолазного обследования, способа укладки трубопровода. Крутизну откосов подводных траншей следует назначать в соответствии с требованиями СНиП III-42-80.

    Подготовленный к укладке в подводную траншею переход представляет отрезок или несколько отрезков трубопровода, общая длина которых на несколько десятков метров превышает ширину водной преграды между урезами воды. Сваренный в нитку, заизолированный и футерованный, утяжеленный грузами и оснащенный необходимыми приспособлениями трубопровод устанавливают в исходном перед укладкой положении. Операция по укладке является основной, завершающей большой объём подготовительных работ. Существует много способов и схем укладки трубопроводов в подводные траншеи. Все они могут быть разбиты на три способа: протаскивание по дну, погружение с поверхности воды трубопровода полной длины и погружение последовательным наращиванием секций трубопровода.

    При первом способе трубопровод протаскивают по дну подводной траншеи с одного берега к другому с помощью троса, заранее проложенного в траншею. Этот способ позволяет выполнять укладку трубопровода, не создавая помех судоходству. Нефтепроводы укладывают протаскиванием обычно с одновременной заливкой внутрь него воды, чтобы трубопровод не всплыл при протаскивании, т.к. в незаполненном состоянии он обладает положительной плавучестью.

    Для протаскивания трубопровода требуется обеспечить необходимое тяговое усилие. Расчётное тяговое усилие определяется из условия:

    , (8.23)

    где m коэффициент условия работы тяговых средств, принимаемый 1,1 при протаскивании лебедкой и 1,2 – при протаскивании тягачами; Тп – предельное сопротивление трубопровода на сдвиг.

    Предельное сопротивление при трогании трубопровода с места будет самым большим и определяется в общем случае из условия:

    , (8.24)

    где qi – вес единицы длины снаряженного трубопровода; р – расчётный угол внутреннего трения грунта; i длина части окружности трубы, врезающейся в грунт; lтр – длина протаскиваемого трубопровода; Епас – пассивный отпор грунта врезающимися в него неровностями на поверхности трубы. Если протаскивается трубопровод с гладкой поверхностью, то Епас = 0.

    Суть способа укладки с поверхности воды заключается в следующем. Полностью подготовленный к укладке трубопровод устанавливают на плаву над подготовленной заранее траншеей, а затем погружают на её дно путем заполнения водой.

    Метод погружения трубопровода с поверхности воды последовательным наращиванием секций трубопровода применяется при переходах водных преград большой протяженности. В этом случае укладка трубопровода производится с помощью специального трубоукладочного судна, которое закрепляется на якорях.

    Известны специальные способы прокладки магистральных трубопроводов через водные преграды:

    • постепенного заглубления – обетонированный трубопровод укладывают на спланированное дно водоёма, сложенное рыхлыми породами; по трубопроводу несколько раз проходит (вперед-назад) самоходный трубозаглубитель гидравлического, механического или гидромеханического типа, послойно удаляя из под него грунт; трубопровод под действием собственного веса погружается на дно водоёма (на проектную отметку); после этого он обследуется водолазами и засыпается;

    • направленного бурения – с одного берега водоёма на другой методом направленного бурения под дном прокладывается труба-кожух, в которую протаскивается рабочая труба; межтрубное пространство заполняется цементным раствором или другим материалом.


    8.6. Надземные трубопроводы
    Надземная схема прокладки составляет лишь незначительную долю в общем объёме трубопроводного строительства.

    Надземная прокладка трубопроводов или их отдельных участков допускается в пустынных и горных районах, болотистых местностях, районах распространения вечномерзлых грунтов, на неустойчивых грунтах, а также на переходах через естественные и искусственные препятствия: овраги, реки, имеющие неустойчивое русло; реки с крутыми берегами; каналы и т.д.

    В трубопроводном строительстве применяются следующие основные конструктивные схемы надземных трубопроводов:

    • балочные схемы, не содержащие специальных устройств для компенсации продольных удлинений трубы;

    • балочные схемы, включающие различные конструктивные элементы, позволяющие компенсировать удлинения труб при изменении их температуры и внутреннего давления;

    • подвесные схемы – трубопровод подвешивается к специальным несущим канатам, закрепляемым на высоких опорах;

    • арочная схема – трубопровод сооружается по схеме неразрезной арки;

    • схема самонесущего трубопровода – трубопровод подвешивается к опорным устройствам и материал труб воспринимает нагрузку от веса трубопровода и транспортируемого продукта.

    Технологическая схема строительства трубопроводов балочного типа на болотах включает следующие элементы работ:

    • устраивают опоры под трубопровод и компенсаторы;

    • монтируют трубопровод вдоль свайных опор;

    • укладывают трубопровод на опоры участками или сразу на полную длину;


    Р
    ис. 8.3. Зигзагообразный балочный переход



    • замыкают монтажные стыки при температуре, указанной в проекте.

    Надземный трубопровод на участках большой протяженности может быть уложен или в виде упругоискривленной кривой (рис. 8.4) или в виде зигзагообразной схемы (рис. 8.3).


    Порядок выполнения работ при строительстве упругоискривленного трубопровода следующий:

    1. На проектном расстоянии устанавливают шарнирные опоры, между которыми располагают скользящие опоры.

    2. Плети длиной 5001000 м укладывают рядом с опорами.

    3. трубопровод поднимают и укладывают на опоры трубоукладчиками.

    4. Сначала закрепляют конец трубопровода в точке 0, затем трубопровод устанавливают в проектное положение на первом пролёте и временно закрепляют с помощью приспособлений на скользящих опорах 1, 2, 3 и 4.

    5. Трубопровод закрепляют на шарнирной опоре 5 и освобождают от закрепления на опорах 1, 2, 3 и 4.

    Аналогичным образом производится укладка трубопровода на других участках.

    Компенсация искривлений в упругоискривленном трубопроводе достигается за счёт изменения начального положения трубопровода, уложенного в виде синусоиды на опорах. Шарнирные опоры не дают трубам перемещаться как в продольном, так и в поперечном направлениях, чем и достигается эффект компенсации.

    Компенсация удлинений осуществляется за счёт изменения положения в плане начального положения трубопровода I. Если участок удлиняется, то трубопровод займет положение II, если укоротится – положение III. При этом трубопровод будет перемещаться по подвижным опорам 17 и поворачиваться на шарнирных опорах НО, которые не дают трубе передвигаться в продольном направлении.

    Изменение длины участка L на любой из рассмотренных схем от t и Р можно определить по формуле:

    , (8.25)

    при t 0 – знак «+», при t 0 – знак «-».




    Чтобы определить напряженное состояние многопролетного надземного трубопровода, достаточно выяснить напряженное состояние одного пролёта, ибо все пролёты находятся в одинаковых статических условиях. Напряженное состояние труб изменяется от начального, возникающего в незаполненном трубопроводе в период монтажа, до эксплуатационного.

    В начальный момент, когда трубопровод смонтирован и не заполнен продуктом, его температура равна t0, а интенсивность вертикальной распределенной нагрузки q0 соответствует весу единицы длины пустого изолированного трубопровода.

    В период эксплуатации трубопровод заполнен продуктом и на него могут действовать снеговая и ледовая нагрузки и тогда интенсивность вертикальной распределенной нагрузки будет равна:

    , (8.26)

    где q0 – вес 1 м трубы, qп – вес продукта, приходящийся на 1 м трубы; qдоп – нагрузка от снега и льда на 1 м длины трубопровода.

    Для начального состояния трубопровода изгибающие моменты в опорных сечениях и прогиб в сечении х = l/2:

    ; (8.27)

    При эксплуатации изгибающие моменты в опорных сечениях:

    , (8.28)

    где Р – осевое продольное усилие, возникающее от действия давления и температуры; fд – действительный прогиб трубопровода от действия всех нагрузок.

    Суммарные напряжения в трубопроводе при его эксплуатации определяются по формуле:

    , (8.29)

    где F площадь поперечного сечения металла трубы.

    Полученное значение сравнивают с допускаемым значением напряжения в соответствии со СНиП 2.05.06-85:

    , (8.30)

    где коэффициент двухосного напряженного состояния;

    , (8.31)

    – второе расчётное сопротивление

    , (8.32)

    m коэффициент условия работы трубопровода; k2 , kн – соответственно, коэффициенты надежности по материалу трубы и по назначению трубопровода, принимаемые в соответствии со СНиП 2.05.06-85.

    При известной полной расчетной нагрузке qэ из условия недопустимости пластических деформаций определяется допускаемая длина l одного пролёта многопролетного балочного перехода:

    . (8.33)
    1   ...   5   6   7   8   9   10   11   12   ...   20


    написать администратору сайта