Главная страница
Навигация по странице:

  • 8.1.6. Типы процессов самоорганизации

  • 8.2. Принципы универсального эволюционизма

  • 8.3. Самоорганизация в микромире. Формирование элементного состава вещества материи

  • Циклы ядерных реакций.

  • Протонный цикл

  • Химическая эволюция на молекулярном уровне

  • Концепции современного естествознания_Бочкарев А.И, Бочкарева Т.. Учебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов под ред проф. А. И. Бочкарёва. Тольятти тгус, 2008. 386 с


    Скачать 2.96 Mb.
    НазваниеУчебник для студентов вузов А. И. Бочкарёв, Т. С. Бочкарёва, С. В. Саксонов под ред проф. А. И. Бочкарёва. Тольятти тгус, 2008. 386 с
    Дата10.09.2022
    Размер2.96 Mb.
    Формат файлаdoc
    Имя файлаКонцепции современного естествознания_Бочкарев А.И, Бочкарева Т..doc
    ТипУчебник
    #669818
    страница28 из 37
    1   ...   24   25   26   27   28   29   30   31   ...   37


    8.2.5. Самоорганизация в неравновесных системах
    Рассмотрим простую симметричную бифуркацию, приведенную на рис. 5. Выясним, как возникает самоорганизация и какие процессы происходят, когда ее порог оказывается превзойденным.

    В равновесном или слабо равновесном состоянии существует лишь одно однородное стационарное состояние А без какой-либо упорядоченности. Пусть X — некоторая главная переменная, например концентрация одного из исходных веществ. Рассмотрим, как изменяется состояние системы с возрастанием значения управляющего параметра λ (этим управляющим параметром может быть концентрация другого вещества, от которого зависит ход реакции). При некотором значении λ = λс система достигает порога устойчивости. Обычно данное критическое значение называют точкой биффуркации. В точке В однородное стационарное хаотическое термодинамическое состояние становится неустойчивым относительно флуктуации. При переходе через критическое состояние λс существуют три coстояния, в которых может находиться система: два устойчивых (С и D) и одно неустойчивое (Е). Эта ситуация напоминает бегуна, который, выбежав из дома, достиг пересечения трех дорог. Прямая дорога продолжается через шаткий мостик. Если бегун продолжит путь через мостик, он может потерять устойчивость и упасть на одну из двух твердых дорог.



    Рис. 5. Простая симметричная бифуркация
    Возникает естественный вопрос,: по какому пути пойдет дальнейшее развитие системы после того, как она достигла точки бифуркации? У системы есть выбор: она может отдать предпочтение одной из двух возможностей самоорганизации, соответствующих двум неравномерным распределениям концентрации X в пространстве, определяемых ветвями С и D бифуркационной диаграммы.

    Одно из этих пространственных распределений зеркально симметрично другому. Каким образом система выбирает между правой и левой ветвями? В этом выборе неизбежно присутствует элемент случайности. Уравнения не в состоянии предсказать, по какой траектории пойдет эволюция системы. Мы сталкиваемся со случайными явлениями, подобными исходу бросания игральной кости или монеты. Можно ожидать, что в половине случаев система окажется в одном положении, а в половине – в другом. Теперь можно предположительно ответить на вопрос: почему в живом нарушена симметрия? Все молекулы белка, ДНК, сахаров и т.д. закручены в левую сторону. Ответ таков: диссимметрия обусловлена единичным случайным событием. После того, как выбор сделан, вступают в действие автокаталитические процессы, и левосторонняя структура порождает новые, только левосторонние структуры.

    На рис. 6 показана система, которая может находиться в большом числе устойчивых и неустойчивых состояний.

    Таким образом, в сильно неравновесных системах процессы самоорганизации сводятся к тонкому взаимодействию между случайностью и необходимостью, между флуктуациями и детерминистскими иконами. Вблизи точек бифуркации основную роль играют флуктуации или случайные элементы, тогда как в интервалах между точками бифуркаций доминируют детерминистские закономерности.


    Рис. 6. Устойчивые и неустойчивые состояния системы
    Следует особо подчеркнуть различие между равновесным (статистическим) хаосом, который может вызвать лишь небольшие отклонения-флуктуации от состояния равновесия, и динамическим хаосом и неравновесных системах, обладающих значительным избытком свободной энергии. Этот динамический созидающий хаос и служит источником всего того порядка, который мы наблюдаем в окружающем нас мире неживой и живой природы. Так, жизнь на Земле зародилась в сильно неравновесной среде, а возникшие организмы стали жить и эволюционировать, потребляя свободную энергию, поступающую к нам извне (в конечном счете, энергию Солнца).

    В заключение подведем некоторые итоги.

    Самоорганизация — это процесс, в ходе которого создается, воспроизводится или совершенствуется организация сложной динамической системы. Процессы самоорганизации могут иметь место только в системах, обладающих высоким уровнем сложности и большим количеством элементов, связи между которыми имеют не жесткий, а вероятностный характер. Основные свойства самоорганизующих систем — открытость, нелинейность, диссипативность. Теория самоорганизации имеет дело с открытыми нелинейными диссипативными системами, далекими от равновесия.

    Свойства самоорганизации обнаруживают объекты самой различной природы: живая клетка, организм, биологическая популяция, биогеоценоз, человеческий коллектив и т.д. Процессы самоорганизации осуществляются за счет перестройки существующих и образования новых связей между элементами системы. Отличительная особенность процессов самоорганизации – их целенаправленный, но вместе с тем и естественный, спонтанный характер: эти процессы протекают при взаимодействии системы с окружающей средой, в той или иной мере автономны и относительно независимы от нее.
    8.1.6. Типы процессов самоорганизации
    Различают три типа процессов самоорганизации:

    1. процессы самозарождения организации, т.е. возникновение из некоторой совокупности целостных объектов определенного уровня новой целостной системы со своими специфическими закономерностями (например, генезис многоклеточных организмов из одноклеточных);

    2. процессы, благодаря которым система поддерживает определенный уровень организации при изменении внешних и внутренних условий ее функционирования (здесь исследуются главным образом гомеостатические механизмы, в частности, механизмы, действующие по принципу отрицательной обратной связи);

    3. процессы, связанные с совершенствованием и саморазвитием таких систем, которые способны накапливать и использовать прошлый опыт.

    Специальное исследование проблем самоорганизации впервые было начато в кибернетике. Термин «самоорганизующая система» ввел английский кибернетик У.Р. Эшби в 1947 г. Широкое изучение самоорганизации началось в конце 50-х гг. XX в. в целях отыскания новых принципов построения технических устройств, способных моделировать различные стороны интеллектуальной деятельности человека. Исследование проблем самоорганизации стало одним из основных путей проникновения идей и методов кибернетики, теории информации, теории систем, биологического и системного познания.

    В 70-е гг. XX в. начала активно развиваться теория сложных самоорганизующихся систем. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании – синергетики. Как и кибернетика, синергетика – это некоторый междисциплинарный подход. В отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.

    Мир нелинейных самоорганизующихся систем гораздо богаче, чем мир закрытых, линейных систем. Вместе с тем «нелинейный мир» сложнее моделировать. Как правило, для приближенного решения большинства возникающих нелинейных уравнений требуется сочетание современных аналитических методов с вычислительными экспериментами. Синергетика открывает для точного, количественного, математического исследования такие стороны мира, как его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, позволяет моделировать катастрофические ситуации и т.д.

    Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных приборов до формирования общественного мнения и демографических процессов. Основной вопрос синергетики – существуют ли общие закономерности, управляющие возникновением самоорганизующихся систем, их структур и функций. Такие закономерности существуют. Это открытость, нелинейность, диссипативность.
    8.2. Принципы универсального эволюционизма
    Принцип универсального эволюционизма одна из доминирующих современных концепций в науке. Сформировавшийся вначале как результат обобщения естественно-научных знаний, он стал постепенно носить общенаучный характер и включает изучение не только окружающего нас мира природы, но и человеческого общества.

    Первая эволюционная теория, созданная в середине XIX в, Ч. Дарвином, касалась только эволюции в биологии. Затем, в XX в., по мере изучения природы на всех уровнях организации материи, выяснилось, что каждому уровню присущи эволюционные процессы, приводящие к развитию и совершенствованию всех форм материального мира.

    В микромире это эволюционное формирование первичного элементного состава вещества в результате термоядерного синтеза, последовательное образование в природе всех элементов таблицы Менделеева. В микромире установлены также процессы самоорганизации и эволюции химических молекулярных систем.

    На макроуровне обнаружен и исследован целый ряд эволюционно развивающихся неживых систем в направлении повышения уровня организации. В живой природе развитие органического мира происходит в соответствии с эволюционной теорией Ч. Дарвина.

    Процессы в мегамире определяются эволюционной теорией расширяющейся Вселенной. История развития Земли, последовательность образования геосферных оболочек в настоящее время также рассматриваются на основе эволюционной теории.

    Все перечисленные частные эволюционные теории приводят к утверждению и обоснованию всеобщей концепции универсального эволюционизма.

    Ниже более подробно остановимся на упомянутых частных эволюционных теориях с тем, чтобы уяснить важность данной концепции в общенаучном плане.

    Наиболее полная формулировка идей глобального эволюционизма принадлежит, Н. Н. Моисееву и может быть представлена следующим образом.

    1. Вселенная – единая саморазвивающаяся система. Это утверждение позволяет интерпретировать все процессы развития в качестве составляющих единого мирового эволюционного процесса, процесса развития «Суперсистемы Вселенная».

    2. Во всех процессах, имеющих место во Вселенной, неизбежно присутствуют случайные факторы, влияющие на их развитие, и все эти процессы протекают в условиях некоторого уровня неопределенности.

    Случайность и неопределенность – факторы не эквивалентные, но их действие имеет последствия, в равной степени непредсказуемые исследователем, поэтому они находятся вне нашего контроля. Приходится постулировать отсутствие тождественно протекающих процессов, – есть лишь похожесть, близость, но не тождественность.

    3. Во Вселенной властвует наследственность: настоящее и будущее зависят от прошлого.

    4. В мире властвуют законы, являющиеся принципами отбора. Они выделяют из возможных виртуальных, мысленных состояний некоторое множество допустимых. Заметим, что последние три эмпирических обобщения по существу совпадают с дарвиновской триадой: изменчивость, наследственность, отбор.

    5. Принципы отбора допускают существование бифуркационных (в смысле Пуанкаре) состояний, т.е. состояний, из которых даже в отсутствие стохастических факторов возможен переход материального объекта в целое множество новых состояний. В бифуркационном состоянии дальнейшая эволюция оказывается принципиально непредсказуемой, поскольку новое русло эволюционного развития будет определяться, прежде всего, теми неконтролируемыми случайными факторами, которые будут действовать в момент (точнее, в период) перехода.

    Универсальный эволюционизм есть попытка построения общепланетарной теории исследования природных процессов. Процесс самоорганизации природных систем заключается в обретении ими все более и более совершенного динамического равновесия с окружающей средой. Стержнем глобального эволюционизма является онтологическая схема, отражающая сквозную линию развития от низших форм движения к высшим и явления природы могут рассматриваться с единых позиций. На первый план выходит аспект глобального эволюционизма, взаимосвязанный с проблемами самоорганизации. Человек вписывается в эту схему развития как бы изнутри и снаружи. С одной стороны, он совершенно естественный элемент ее, а с другой – сторонний наблюдатель, способный оценивать происходящие события.
    8.3. Самоорганизация в микромире. Формирование элементного состава вещества материи
    На основе достижений ядерной физики в первой половине прошлого века удалось понять механизм образования химических элементов в природе. В 19461948 гг. американский физик Д. Гамов разработал теорию образования химических элементов на основе термоядерного синтеза. В дальнейшем данная теория нашла блестящее экспериментальное подтверждение.

    Согласно указанной теории, существующие в природе химические элементы образовались в результате длительной эволюции от Большого взрыва до наших дней (

    15–20 млрд. лет). Эволюция химического состава в природе связана со звездообразованием и эволюцией звезд и включает несколько этапов.

    На первом этапе происходило образование атомов нейтрального водорода из появившихся во время Большого взрыва электронов и протонов – первых частиц вещественной материи.

    Второй этап – образование из рассеянного в космосе водородного газа под действием гравитации все более уплотняющихся сгустков водородного вещества. Постепенное возрастание давления внутри сжимающегося облака в соответствии с физическими законами привело к возрастанию температуры. При температуре порядка 107 К происходил термоядерный водородный синтез.

    Циклы ядерных реакций. В 1939 г. американский физик-теоретик Г. Бете разработал теорию двух циклов ядерных реакций, идущих в недрах звезд: протон-протонного и углеродного.

    Протонный цикл идет по схеме:

    1H + 1H → 2D; 2D + 1H → 3He; 3He + 3He → 4He + 21H,

    где 1Н — протон;

    2D — ядро изотопа водорода – дейтерия;

    3Не — ядро изотопа гелия;

    4Не — ядро атома гелия.

    Конечным результатом данной последовательности реакций, называемой протон-протонной цепочкой, или водородным циклом, является превращение четырех ядер атомов водорода в одно ядро гелия (т.е. для протекания реакции требуется только водород).

    Другой цикл ядерных реакций – углеродный – требует наличия углерода, служащего катализатором процессов всего дальнейшего ядерного синтеза. Углерод в звездах образуется следующим образом. После того как в результате слияния четырех ядер водорода и образования одного ядра гелия постепенно «выгорает» весь водород, внутреннее ядро звезды составляет только гелий.

    Сжатие гелиевого ядра звезды приводит к дальнейшему повышению его внутренней температуры, в результате чего в термоядерные реакции включаются все более тяжелые ядра, и протекает синтез всех химических элементов.

    После водородных реакций при температурах свыше 150∙106 К начинает идти реакция слияния ядер гелия.

    Изучение реакций синтеза ядер гелия показало, что слияние циух ядер гелия 4Не приводит к образованию неустойчивых ядер бериллия 8Ве, а слияние трех ядер гелия 4Не – к образованию устойчивых ядер углерода 12С.

    На следующем этапе в результате слияния ядер углерода 12С и гелия 4Не образуется ядро кислорода 16О, который, присоединяя ядро гелия 4Не, образует ядро неона 20Ne и т.д.

    Таким образом, в звездах за время их жизни в процессе ядерных реакций синтезируется определенное количество различных элементов, которые в ряде случаев после угасания звезд рассеиваются в пространстве, изменяя тем самым состав межзвездного газа. Вновь образовавшиеся звезды уже из другого по составу межзвездного вещества имеют иные исходные условия для протекания последующих в них термоядерных реакций. Данный процесс формирования химических элементов веществ в природе происходит непрерывно.

    Современные астрофизические исследования спектров звезд позволили установить их химический состав. Оказалось, что полученные временные ряды звезд разных поколений и разного элементного состава находятся в хорошем согласии с рассмотренной теорией. Имеются звезды, в основном состоящие только из водорода и гелия (в них реализуется только протон-протонный термоядерный цикл), а также звезды с относительно большим содержанием более тяжелых элементов таблицы Менделеева в соответствии с углеродным циклом,

    Химическая эволюция на молекулярном уровне

    До возникновения жизни на Земле в течение длительного времени, продолжавшегося около двух миллиардов лет, происходил химическая эволюция неживой (косной материи).

    В связи с существованием фундаментальных физических законов в природе, касающихся различных форм движения материи (таких, как тепловая, механическая, электромагнитная и т.д.), и в результате соударений различных атомов между собой возникали различные химические соединения. Между ними образовывались химические связи, появлялись новые устойчивые молекулярные системы. Иными словами, происходили химические реакции, в результате которых постепенно появилось огромное разнообразие молекул. Последующие химические реакции приводили к образованию еще более сложных химических веществ, обладающих более высокой организацией по сравнению с исходными веществами.

    Очевидно, что из первичной смеси частиц могут образовываться самые разнообразные упорядоченные структуры (конечные продукты), но преимущественное распространение получают те, для которых скорость процесса образования превышает скорость распада, т.е. происходит конкуренция образовавшихся структур и отбор на более устойчивых.

    На определенном уровне развития микросистемы возникают автокаталитические процессы, благодаря которым повышается уд вень обратных связей. Случайно появившаяся молекула катализатора начинает управлять ходом химического процесса и воспроизводить себе подобные молекулы. Этот процесс уже носит упорядоченный характер и осуществляется под воздействием возникшей ранее информации. Безусловно, при воспроизводстве вещества вследствие действия изменяющихся внешних факторов возможны сбои и случайные искажения структур, в результате чего появляются вещества-мутанты. Благодаря этому автокаталитический процесс может пойти по другому пути или же могут возникнуть множество автокаталитических процессов, конечным продуктом которых является одно и то же вещество. Как и в случае простейших химических реакций, здесь наблюдается конкуренция различных автокаталитических процессов, исход которой определяется скоростью синтеза и энергетикой.

    В процессе химической эволюции геосферы таким путем происходило образование вначале неорганических соединений (солей, оксидов и др.), а затем и органических. В процессе стратификации вещества геосферы при отвердевании расплавов, выпаривании перенасыщенных растворов солей или под действием высоких давлений в глубинах земной коры происходила упаковка некоторых неорганических соединений в геометрически правильные упорядоченные структуры – кристаллы. Органические кристаллы (а к ним относится большинство биополимеров) образовались в результате эволюции органических молекул.

    По некоторым оценкам, сегодня насчитывается около 300 тысяч неорганических и шести миллионов органических соединений, созданных природой. Основу органики составляют всего шесть элементов-органогенов: углерод, водород, кислород, азот, фосфор, сера. Их доля в структуре органических соединений составляется 97%. В основу органики природа заложила углерод, химические связи которого образуют остов молекул. Углерод по сравнению с другими химическими элементами обладает уникальными возможностями: образует как ковалентные, так и ионные (в металлоорганических соединениях) связи, которые легко активируются и в то же время достаточно прочны. Разнообразие классов органических соединений обусловлено способностью углерода к образованию одно-, двух-, трех-, четырех- и шестиэлектронных связей.

    Появление автокаталитических реакций и повышение уровня информационных связей повысило скорость упорядочения материи и образования все более сложных, информационно насыщенных соединений. Однако при синтезе таких сложных соединений, как белки, нуклеиновые кислоты, ферменты, природа «использовала» далеко не все имеющиеся в ее арсенале простые органические соединения. Например, для построения белков из ста аминокислот используется всего лишь двадцать.

    Автокаталитические системы со временем становятся основой простейших самоорганизующихся биохимических систем. Появляется циклическая организация процессов. Первичная химическая реакция дает продукт, который становится исходным для последующей реакции и в то же время является катализатором для первой реакции и управляет ее развитием. С реакцией второго уровня происходит аналогичный процесс. Над первым циклом как бы надстраивается второй и управляет первым. Конечный продукт второго. цикла становится исходным продуктом для третьего и т.д.

    Процессы, протекающие на вышележащем уровне, управляют процессами нижележащего уровня. Создается пирамида (иерархия) циклов, управление которыми осуществляется по принципу обратной связи. Такую структуру немецкий ученый М. Эйген назвал гиперциклом. В гиперцикле, как и в одиночной автокаталитической реакции, возможно появление мутантов, но благодаря конкуренции выживают наиболее оптимальные с точки зрения фундаментальных законов природы. Они и составляют биохимическую основу более сложных структур. По этому принципу развивается большинство биохимических реакций. Ученые предполагают, что данный механизм лежал в основе перехода от косной материи к примитивному самовоспроизводящемуся (живому) веществу. Период формирования иерархических самоуправляемых автокаталитических циклов называют ранним этапом предбиологической эволюции вещества.

    По всей вероятности, образование циклов и их организация в гиперциклы, как и вообще самоорганизация систем, были необходимым этапом в эволюции материи и переходе от косного вещества к живому.

    В 60-х гг. XX в. А.П. Руденко разработал теорию химической эволюции, в основу которой были положены идеи самоорганизации и саморазвития каталитических систем и самосовершенствования катализаторов в процессе синтеза.
    1   ...   24   25   26   27   28   29   30   31   ...   37


    написать администратору сайта