Главная страница
Навигация по странице:

  • Лучистая энергия

  • Учебник по микробиологии. Учебник для товаровед, и технол фак торг вузов. 5е изд., перераб. М. Экономика, 1985. 256 с


    Скачать 2.41 Mb.
    НазваниеУчебник для товаровед, и технол фак торг вузов. 5е изд., перераб. М. Экономика, 1985. 256 с
    АнкорУчебник по микробиологии.doc
    Дата28.01.2017
    Размер2.41 Mb.
    Формат файлаdoc
    Имя файлаУчебник по микробиологии.doc
    ТипУчебник
    #396
    страница8 из 25
    1   ...   4   5   6   7   8   9   10   11   ...   25

    Таблица 7




    Время, сутки, от посева до появления

    видимого роста

    Названия грибов

    грибов при температуре,

    °С







    -8 -5

    –2

    0

    2

    комнатной

    Aspergillus glaucus . .

    Роста нет в течение нескольких месяцев

    159

    72

    2

    Mucor racemosus

    То же

    То же

    То же

    17

    6

    1

    Fusarium culmorum . .

    »

    133

    13

    "8

    6

    2

    Monilia nigra.....

    »

    131

    49

    24

    2

    1

    Penicillium glaucum . .

    »

    99

    28

    16

    9

    1

    Botrytis cinerea . . .

    »

    24

    9

    6

    5

    2

    Cladosporium herbarum

    »

    18

    16

    11

    6

    1

    Oospora Sp. .....

    414

    20

    13

    11

    U

    2

    Oospora (после выращи-

    щ
















    вания при –5 °C) . .

    34

    23

    13

    Нет

    све-

    3




    1







    дений




    Наиболее неблагоприятное действие оказывают температуры, при которых наступает замерзание среды. При неполном замерзании (помимо указанных выше причин) вымирание микроорганизмов может быть вызвано неблагоприятным действием низкой водной активности aw и повышенного осмотического давления среды, повреждением клеток кристаллами льда, повышением концентрации солей в клетке за счет ее обезвоживания, при этом нарушается структура цитоплазмы (изменяются ее вязкость, дисперсность белково-липоидных частиц и др.), нарушается избирательная проницаемость клеточных мембран вследствие изменения физико-химических свойств их ли-пидов. Со временем все это приводит к необратимым явлениям в клетке и ее гибели.

    Низкие температуры широко применяют для сохранения скоропортящихся продуктов. Применяют два способа холодильного хранения: в охлажденном состоянии – при температуре от 10 до –2 °С и в замороженном виде – при температуре от –12 до –30 "С.

    При хранении охлажденных продуктов лучше, чем при замораживании, сохраняются их натуральные свойства, однако рост на них многих микроорганизмов не исключается, а лишь замедляется. Поэтому сроки хранения охлажденных продуктов непродолжительны и зависят от температуры хранения и исходной степени обсеменения продукта психротроф-ными микроорганизмами. Чем они больше, тем меньше срок хранения.

    Для удлинения сроков хранения продуктов применяют дополнительные меры воздействия на микроорганизмы, например облучение ультрафиолетовыми и гамма-излучениями, озонирование, повышение содержания в атмосфере ССЬ, создание анаэробных условий, препятствующих развитию холодоустойчивых аэробов – возбудителей порчи продуктов и др. Об эффективности применения этих способов обработки пищевых продуктов сказано в гл. 7.

    При хранении продуктов в охлажденном состоянии большое значение имеет относительная влажность воздуха в помещении. При ее повышении микроорганизмы развиваются быстрее. На стенах, потолках и других поверхностях холодильных камер постоянно находится то или иное количество разнообразных микроорганизмов. Попадают они в холодильник вместе с продуктами, тарой, заносятся с поступающим охлажденным воздухом, а также людьми. Обитая в холодильнике длительное время, микробы приспосабливаются к данным условиям существования и приобретают способность развиваться при более низких температурах. Поэтому холодильные камеры необходимо содержать в чистоте, регулярно дезинфицировать и поддерживать в них требуемый температурно-влажностный режим.

    При замораживании продукта отмирает значительная часть находящихся в нем микроорганизмов. При по-

    т

    следующем хранений замороженного продукта выжившие отмирают в нем медленнее.

    При применяемых в практике хранения температурах (не выше –12 °С) замороженные продукты длительно (месяцами) сохраняются без микробной порчи.

    Замораживание не оказывает стерилизующего действия. В замороженных продуктах всегда имеются живые жизнеспособные микроорганизмы и тем больше, чем больше их содержалось на продукте перед его замораживанием.

    Во время размораживания продуктов, особенно при вытекании из них сока, микроорганизмы вновь размножаются и вызывают порчу. Поэтому оттаивать замороженные пищевые продукты следует непосредственно перед употреблением.

    Лучистая энергия

    Воздействие на микроорганизмы различных форм лучистой энергии проявляется по-разному. В основе действия лежат те или иные химические или физические изменения, происходящие в клетках микроорганизмов и в окружающей среде.

    Воздействие лучистой энергии подчиняется общим законам фотохимии – изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения большое значение имеет проникающая способность лучей.

    Свет. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизни только фотосинтезирующих микробов, использующих световую энергию в процессе ассимиляции углекислого газа. Микроорганизмы, не способные к фотосинтезу, хорошо растут в темноте. Прямые солнечные лучи губительны для микроорганизмов; даже рассеянный свет подавляет в той или иной мере их рост. Однако развитие многих плесневых грибов в темноте протекает ненормально: при постоянном отсутствии света хорошо развивается только мицелий, а спорообразование тормозится.

    Патогенные бактерии (за редким исключением) менее устойчивы к свету, чем сапрофитные.

    Известно, что лучистая энергия переносится «порциями» – квантами. Действие кванта зависит от содержания в нем энергии. Количество энергии изменяется в зависимости от длины волны: чем она больше, тем меньше энергия кванта.

    Инфракрасные лучи (ИК-лучи) обладают сравнительно большой длиной волны. Энергия этих излучений недостаточна, чтобы вызвать фотохимические изменения в поглощающих их веществах. В основном она превращается в тепло, что и оказывает губительное действие на микроорганизмы при использовании ИК-излучений для термической обработки продуктов.

    Ультрафиолетовые лучи. Эти лучи являются наиболее активной частью солнечного спектра, обусловливающей его бактерицидное действие. Они обладают высокой энергией, доста-

    89

    точной для того, чтобы вызвать фотохимические изменения в поглощающих их молекулах субстрата и клетки.

    Наибольшим бактерицидным действием обладают лучи с длиной волны 250–260 нм.

    Эффективность воздействия УФ-лучей на микроорганизмы зависит от дозы облучения, т. е. от количества поглощенной энергии. Кроме того, имеет значение характер облучаемого субстрата: его рН, степень обсеменения микробами, а также температура.

    Очень малые дозы облучения действуют даже стимулирующе на отдельные функции микроорганизмов. Более высокие,

    но не приводящие к гибели дозы вызывают торможение отдельных процессов обмена, изменяют свойства микроорганизмов, вплоть до наследственных изменений. Это используется на практике для получения вариантов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и другие биологически активные вещества. Дальнейшее увеличение дозы' приводит к гибели. При ■ дозе ниже смертельной возможно восстановление (реактивация) нормальной жизнедеятельности.

    Различные микроорганизмы неодинаково чувствительны к одной и той же дозе облучения (рис. 24, 25).

    Среди бесспоровых бактерий особенно чувствительны к облучению пигментные бактерии, выделяющие пигмент в окру-

    жающую среду. Пигментные бактерии, содержащие каротино-идные пигменты, чрезвычайно стойки, так как каротиноидные пигменты обладают защитными свойствами против УФ-лучей.

    Споры бактерий значительно устойчивее к действию УФ-лучей, чем вегетативные клетки. Чтобы убить споры, требуется в 4–5 раз больше энергии (см. табл. 9). Споры грибов более выносливы, чем мицелий.

    Гибель микроорганизмов может быть следствием как непосредственного воздействия УФ-лучей на клетки, так и неблагоприятного для них изменения облученного субстрата.

    УФ-лучи инактивируют ферменты, они адсорбируются важнейшими веществами

    клетки (белками, нуклеиновыми кислотами) и вызывают изменения – повреждение их молекул. В облучаемой среде могут образоваться вещества (перекись водорода, озон и др.), губительно действующие на микроорганизмы.

    В настоящее время УФ-лучи довольно широко применяют на практике. Искусственным источником ультрафиолетового излучения чаще служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУВ-15,

    БУВ-30).

    Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений. Обработка УФ-лучами в течение 6 ч уничтожает до 80 % бактерий и плесеней, находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары, упаковочных материалов, оборудования, посуды (в предприятиях общественного питания).

    В последнее время бактерицидные свойства УФ-лучей успешно применяют для дезинфекции питьевой воды.

    Стерилизация пищевых продуктов с помощью УФ-лучей затрудняется их низкой проникающей способностью, в связи с чем действие этих лучей проявляется только на поверхности или в очень тонком слое. Тем не менее известно, что облучение охлажденных мяса, мясопродуктов удлиняет срок их хранения в 23 раза.

    91




    Таблица 9

    Названия бактерий

    Количество бактерицидной энергии, вызывающее

    отмирание до 99 % исходного числа бактерий вводе, мВт/см2

    Escherichia coli...........

    9 000–12 000

    Aerobacter aerogenes.........

    9 000 10 000

    Pseudomonas fluorescein .......

    Micrococcus candicans ........

    Sarcina flava.............

    4 500–5 000

    9 000–12 000

    60 000–65 000

    Bacillus subtilis (споры) .......

    Bacillus megaterium (споры) .....

    Bacillus mycoides (споры) ......

    30 000–40 000 36 000–40 000 36 000–40 000



    Рис. 24. Отмирание бактерий под действием УФ-лучей (по данным автора):

    а– Esch. coli; б – Pseud, fluorescens; в– Micrococcus candicans; гSarcina flava; дВас. subtilis; e – Вас. megatherium

    Рис. 25. Выживаемость дрожжей

    вина под влиянием различных доз

    облучения УФ-лучами (по данным

    Г. П. Авакяна):

    а – Sacch. ludwigii; бSacch. vini; s –

    Hans, apiculata; г– Torulopsis utilis; д

    Candida mycoderma



    Предлагается применять УФ-лучи для стерилизации плодовых соков и вин (в тонком слое). При таком «холодном» способе стерилизации вино получается лучшего качества и сохраняется без порчи дольше, чем пастеризованное. Предлагается обработка совместно с ультразвуком (Г. П. Авакян).

    Для некоторых продуктов (например, для сливочного масла, молока) стерилизация УФ-лучами неприемлема, так как в результате облучения ухудшаются вкусовые и пищевые свойства продуктов.

    Радиоактивные излучения. Расщепление атомных ядер радиоактивных элементов сопровождается излучением α-лучей, β-лучей (высокоскоростные электроны) и γ-лучей (коротковолновые рентгеновские лучи). Энергия квантов радиоактивных излучений очень высока, в связи с чем они химически и биологически чрезвычайно активны, при этом γ-лучи менее активны, чем а- и β-лучи.

    Характерной особенностью радиоактивных излучений является их способность вызывать ионизацию атомов и молекул (образуются положительно и отрицательно заряженные ионы), которая сопровождается разрушением молекулярных структур.

    Микроорганизмы значительно радиоустойчивее, чем высшие организмы. Смертельная доза для них в сотни и тысячи раз выше, чем для животных.

    Эффект действия ионизирующих излучений на микроорганизмы зависит от поглощенной дозы облучения. Очень малые дозы активизируют некоторые жизненные процессы микроорганизмов, воздействуя на их ферментные системы; они вызывают наследственные изменения свойств микробов, приводящие к появлению мутаций. С повышением дозы облучения обмен ' веществ нарушается значительнее, наблюдаются различные патологические изменения в клетках (лучевая болезнь), которые могут привести к их отмиранию. При дозе ниже смертельной может восстановиться нормальная жизнедеятельность облученных клеток.

    Различные структуры и функции клетки обладают неодинаковой чувствительностью. Чувствительны к действию ионизирующих излучений многие ферментные системы, мембранные структуры, ядерный аппарат, особенно ДНК, что отражается при облучении на функции размножения.

    Губительное действие радиоактивных излучений обусловлено многими факторами. Они вызывают радиолиз воды в клетках и в субстрате. При этом образуются свободные радикалы, атомарный водород, перекиси. Эти вещества, обладая высокой химической активностью, вступают во взаимодействие с другими веществами – возникает большое количество химических реакций, не свойственных нормально живущей клетке. В результате наступают необратимые нарушения обмена веществ, разрушаются ферменты, изменяются внутриклеточные структуры.
    1   ...   4   5   6   7   8   9   10   11   ...   25


    написать администратору сайта