Главная страница
Навигация по странице:

  • 1.11.2. Последовательная передача данных

  • Синхронный последовательный интерфейс

  • Асинхронный последовательный интерфейс

  • 1.12.Способы обмена информацией в микропроцессорной системе

  • 1.12.1.Программно-управляемый ввод/вывод

  • 1.12.2.Организация прерываний в микроЭВМ

  • Компьютерные системы и сети Часть 1 (Архитектура ВС) Мельникова ЕВ, БГУИР 2009 (Мет пособие). Компьютерные системы и сети Часть 1 (Архитектура ВС) Мельникова. Учебнометодический комплекс по дисциплине компьютерные системы и сети для студентов специальности Т. 10 02 00 Программное обеспечение информационных технологий


    Скачать 0.76 Mb.
    НазваниеУчебнометодический комплекс по дисциплине компьютерные системы и сети для студентов специальности Т. 10 02 00 Программное обеспечение информационных технологий
    АнкорКомпьютерные системы и сети Часть 1 (Архитектура ВС) Мельникова ЕВ, БГУИР 2009 (Мет пособие).pdf
    Дата26.03.2018
    Размер0.76 Mb.
    Формат файлаpdf
    Имя файлаКомпьютерные системы и сети Часть 1 (Архитектура ВС) Мельникова .pdf
    ТипУчебно-методический комплекс
    #17225
    КатегорияИнформатика. Вычислительная техника
    страница4 из 14
    1   2   3   4   5   6   7   8   9   ...   14
    1.11.1.Параллельная передача данных
    Параллельная передача данных между контроллером и ВУ является по своей организации наиболее простым способом обмена. Для организации параллельной передачи данных помимо шины данных, количество линий в которой равно числу одновременно передаваемых битов данных, используется минимальное количество управляющих сигналов.
    В простом контроллере ВУ, обеспечивающем побайтную передачу данных на внешнее устройство (рис. 1.11.1.1.), в шине связи с ВУ используются всего два управляющих сигнала: "Выходные данные готовы" и "Данные приняты".

    33
    Рис. 1.11.1.1. Простой параллельный контроллер вывода.
    Для формирования управляющего сигнала "Выходные данные готовы" и приема из ВУ управляющего сигнала "Данные приняты" в контроллере используется одноразрядный адресуемый регистр состояния и управления А2
    (обычно используются раздельные регистр состояния и регистр управления).
    Одновременно с записью очередного байта данных с шины данных системного интерфейса в адресуемый регистр данных контроллера (порт вывода А1) в регистр состояния и управления записывается логическая единица. Тем самым формируется управляющий сигнал "Выходные данные готовы" в шине связи с
    ВУ.
    ВУ, приняв байт данных, управляющим сигналом "Данные приняты" обнуляет регистр состояния контроллера. При этом формируются управляющий сигнал системного интерфейса "Готовность ВУ" и признак готовности ВУ к обмену,
    передаваемый в процессор по одной из линий шины данных системного интерфейса посредством стандартной операции ввода при реализации программы асинхронного обмена.
    Логика управления контроллера обеспечивает селекцию адресов регистров контроллера, прием управляющих сигналов системного интерфейса и формирование на их основе внутренних управляющих сигналов контроллера,
    формирование управляющего сигнала системного интерфейса "Готовность
    ВУ". Для сопряжения регистров контроллера с шинами адреса и данных системного интерфейса в контроллере используются соответственно приемники шины адреса и приемопередатчики шины данных.

    34
    Рассмотрим на примере, каким образом контроллер ВУ обеспечивает параллельную передачу данных в ВУ под управлением программы асинхронного обмена. Алгоритм асинхронного обмена в данном случае передачи прост.
    1. Процессор микроЭВМ проверяет готовность ВУ к приему данных.
    2. Если ВУ готово к приему данных (в данном случае это логический 0 в нулевом разряде регистра А2), то данные передаются с шины данных системного интерфейса в регистр данных А1 контроллера и далее в ВУ. Иначе повторяется п. 1.
    Пример 1. Фрагмент программы передачи байта данных в асинхронном режиме с использованием параллельного контроллера ВУ (рис. 1.11.1.1.). Для написания программы асинхронной передачи воспользуемся командами процессора 8086.
    MOV DX, A2 номер порта A2 помещаем в DX
    m1:IN AL, DX чтение байта из порта A2
    TEST AL, 1 проверка нулевого состояния регистра A2
    JNS ml переход на метку ml если разряд не нулевой
    MOV AL, 64 выводимый байт данных помещается в AL
    MOV DX, A1 номер порта A1 записываем в DX
    OUT DX, AL содержимое регистра AX передаем в порт A1
    Команда во второй строке приводит к следующим действиям. При ее выполнении процессор по шине адреса передает в контроллер адрес А2,
    сопровождая его сигналом "Ввод" (IORD#; здесь и далее в скобках указаны сигналы на шине ISA). Логика управления контроллера, реагируя на эти сигналы, обеспечивает передачу в процессор содержимого регистра состояния
    А2 по шине данных системного интерфейса.
    Команда в третьей строке приводит к следующим действиям. Процессор проверяет значение соответствующего разряда принятых данных. Нуль в этом разряде указывает на неготовность ВУ к приему данных и, следовательно, на необходимость возврата к проверке содержимого А2, т. е. процессор, выполняя три первые команды, ожидает готовности ВУ к приему данных. Единица в этом разряде подтверждает готовность ВУ и, следовательно, возможность передачи байта данных.
    В седьмой строке осуществляется пересылка данных из регистра AX
    процессора в регистр данных контроллера А1. Процессор по шине адреса передает в контроллер адрес А1, а по шине данных - байт данных, сопровождая их сигналом "Вывод" (IOWR#). Логика управления контроллера обеспечивает запись данных с шины данных в регистр данных А1 и устанавливает в ноль бит готовности регистра состояния А2, формируя тем самым управляющий сигнал для ВУ "Выходные данные готовы". ВУ принимает байт данных и управляющим сигналом "Данные приняты" устанавливает в единицу регистр

    35
    состояния А2. (Далее контроллер ВУ по этому сигналу может сформировать и передать в процессор сигнал "Готовность ВУ", который в данном случае извещает процессор о приеме данных внешним устройством и разрешает процессору снять сигнал "Вывод" и тем самым завершить цикл вывода данных в команде пересылки, однако в IBM-совместимых персональных компьютерах с шиной ISA сигнал "Готовность ВУ" не формируется, а имеется сигнал IO CH
    RDY#, позволяющий продлить цикл обмена, если устройство недостаточно быстрое. В данном случае нет необходимости в сигнале "Готовность ВУ", т.к.
    шина ISA является синхронной и, следовательно, все операции выполняются по тактовым импульсам.)
    Блок-схема простого контроллера ВУ, обеспечивающего побайтный прием данных из ВУ, приведена на рис. 1.11.1.2. В этом контроллере при взаимодействии с внешним устройством также используются два управляющих сигнала: "Данные от ВУ готовы" и "Данные приняты".
    Рис. 1.11.1.2. Простой параллельный контроллер ввода
    Для формирования управляющего сигнала "Данные приняты" и приема из ВУ
    управляющего сигнала " Данные от ВУ готовы" используется одноразрядный адресуемый регистр состояния и управления А2.
    Внешнее устройство записывает в регистр данных контроллера А1 очередной байт данных и управляющим сигналом "Данные от ВУ готовы" устанавливает в единицу регистр состояния и управления А2.
    При этом формируются: управляющий сигнал системного интерфейса "Готовность ВУ"; признак готовности ВУ к обмену, передаваемый в процессор

    36
    по одной из линий шины данных системного интерфейса посредством операции ввода при реализации программы асинхронного обмена.
    Тем самым контроллер извещает процессор о готовности данных в регистре А1.
    Процессор, выполняя программу асинхронного обмена, читает байт данных из регистра данных контроллера и обнуляет регистр состояния и управления А2.
    При этом формируется управляющий сигнал "Данные приняты" в шине связи с внешним устройством.
    Логика управления контроллера и приемопередатчики шин системного интерфейса выполняют те же функции, что и в контроллере вывода (см. рис.
    1.11.1.1.),
    Рассмотрим работу параллельного интерфейса ввода при реализации программы асинхронного обмена. Алгоритм асинхронного ввода так же прост,
    как и асинхронного вывода.
    1. Процессор проверяет наличие данных в регистре данных контроллера А1.
    2. Если данные готовы (логическая 1 в регистре А2), то они передаются из регистра данных А1 на шину данных системного интерфейса и далее в регистр процессора или ячейку памяти микрокомпьютера. Иначе повторяется п. 1.
    Пример 2. Фрагмент программы приема байта данных в асинхронном режиме с использованием параллельного интерфейса (контроллер ВУ, рис. 1.11.1.2.):
    MOV DX, A2 номер порта A2 помещаем в DX
    m1:IN AL, DX чтение байта из порта A2
    TEST AL, 1 проверка нулевого разряда состояния регистра A2
    JZ ml переход на метку ml если разряд не нулевой
    MOV DX, A1 номер порта A1 записываем в DX
    IN AL, DX содержимое регистра A1 передаем в регистр AL
    В третьей строке выполняется проверка содержимого регистра А2, т.е.
    признака наличия данных в регистре данных А1. Команда выполняется точно так же, как и в примере 1. Единица в нулевом разряде (содержимое регистра
    А2) подтверждает, что данные от ВУ записаны в регистр данных контроллера и необходимо переслать их на шину данных. Нуль в знаковом разряде указывает на неготовность данных от ВУ и, следовательно, на необходимость вернуться к проверке готовности.
    IN AL, DX - пересылка данных из регистра данных контроллера A1 в регистр процессора AL. Процессор передает в контроллер по шине адреса системного интерфейса адрес A1, сопровождая его сигналом "Ввод". Логика управления контроллера в ответ на сигнал "Ввод" (IORD#) обеспечивает передачу байта данных из регистра данных A1 на шину данных и, в общем случае, но не в
    IBM-совместимом персональном компьютере с шиной ISA, сопровождает его сигналом "Готовность ВУ", который подтверждает наличие данных от ВУ на шине данных и по которому процессор считывает байт с шины данных и помещает его в указанный регистр. (В IBM-совместимом персональном компьютере с шиной ISA процессор считывает байт с шины данных по

    37
    истечении определенного времени после установки сигнала IORD#.) Затем логика управления обнуляет регистр состояния и управления А2, формируя тем самым управляющий сигнал для внешнего устройства "Данные приняты".
    Таким образом, завершается цикл ввода данных.
    Как видно из рассмотренных примеров, для приема или передачи одного байта данных процессору необходимо выполнить всего несколько команд, время выполнения которых и определяет максимально достижимую скорость обмена данными при параллельной передаче. Таким образом, при параллельной передаче обеспечивается довольно высокая скорость обмена данными, которая ограничивается только быстродействием ВУ.
    1.11.2. Последовательная передача данных
    Использование последовательных линий связи для обмена данными с внешними устройствами возлагает на контроллеры ВУ дополнительные по сравнению с контроллерами для параллельного обмена функции. Во-первых,
    возникает необходимость преобразования формата данных: из параллельного формата, в котором они поступают в контроллер ВУ из системного интерфейса микроЭВМ, в последовательный при передаче в ВУ и из последовательного в параллельный при приеме данных из ВУ. Во-вторых, требуется реализовать соответствующий режиму работы внешнего устройства способ обмена данными: синхронный или асинхронный.
    Синхронный последовательный интерфейс
    Простой контроллер для синхронной передачи данных в ВУ по последовательной линии связи (последовательный интерфейс) представлен на рис. 1.11.2.1.
    Рис. 1.11.2.1.Контроллер последовательной синхронной передачи

    38
    Восьмиразрядный адресуемый буферный регистр контроллера А1 служит для временного хранения байта данных до его загрузки в сдвиговый регистр.
    Запись байта данных в буферный регистр с шины данных системного интерфейса производится так же, как и в параллельном интерфейсе, только при наличии единицы в одноразрядном адресуемом регистре состояния контроллера А2. Единица в регистре состояния указывает на готовность контроллера принять очередной байт в буферный регистр. Содержимое регистра А2 передается в процессор по одной из линий шины данных системного интерфейса и используется для формирования управляющего сигнала системного интерфейса "Готовность ВУ". При записи очередного байта в буферный регистр A1 обнуляется регистр состояния А2.
    Программа записи байта данных в буферный регистр аналогична программе из примера 1. за исключением команды перехода: вместо команды JNZ m1
    (переход, если не ноль) необходимо использовать команду JZ m1 (переход, если ноль).
    Преобразование данных из параллельного формата, в котором они поступили в буферный регистр контроллера из системного интерфейса, в последовательный и передача их на линию связи производятся в сдвиговом регистре с помощью генератора тактовых импульсов и двоичного трехразрядного счетчика импульсов следующим образом.
    Последовательная линия связи контроллера с ВУ подключается к выходу младшего разряда сдвигового регистра. По очередному тактовому импульсу содержимое сдвигового регистра сдвигается на один разряд вправо и в линию связи "Данные" выдается значение очередного разряда. Одновременно со сдвигом в ВУ передается по отдельной линии "Синхронизация" тактовый импульс. Таким образом, каждый передаваемый по линии "Данные" бит информации сопровождается синхронизирующим сигналом по линии "Синхронизация", что обеспечивает его однозначное восприятие на приемном конце последовательной линии связи.
    Количество переданных в линию тактовых сигналов, а следовательно, и переданных бит информации подсчитывается счетчиком тактовых импульсов.
    Как только содержимое счетчика становится равным 7, т. е. в линию переданы
    8 бит (1 байт) информации, формируется управляющий сигнал "Загрузка",
    обеспечивающий запись в сдвиговый регистр очередного байта из буферного регистра. Этим же управляющим сигналом устанавливается в "1" регистр состояния. Очередным тактовым импульсом счетчик будет сброшен в "0", и начнется очередной цикл выдачи восьми битов информации из сдвигового регистра в линию связи.
    Синхронная последовательная передача отдельных битов данных на линию связи должна производиться без какого-либо перерыва, и следующий байт данных должен быть загружен в буферный регистр из системного интерфейса за время, не превышающее времени передачи восьми битов в последовательную линию связи.

    39
    При записи байта данных в буферный регистр обнуляется регистр состояния контроллера. Нуль в этом регистре указывает, что в линию связи передается байт данных из сдвигового регистра, а следующий передаваемый байт данных загружен в сдвиговый регистр.
    Контроллер для последовательного синхронного приема данных из ВУ состоит из тех же компонентов, что и контроллер для синхронной последовательной передачи, за исключением генератора тактовых импульсов.
    Асинхронный последовательный интерфейс
    Организация асинхронного последовательного обмена данными с внешним устройством осложняется тем, что на передающей и приемной стороне последовательной линии связи используются настроенные на одну частоту, но физически разные генераторы тактовых импульсов и, следовательно, общая синхронизация.
    Обмен данными с ВУ по последовательным линиям связи широко используется в микроЭВМ, особенно в тех случаях, когда не требуется высокой скорости обмена. Вместе с тем применение в них последовательных линий связи с ВУ обусловлено двумя важными причинами. Во-первых,
    последовательные линии связи просты по своей организации: два провода при симплексной и полудуплексной передаче и максимум четыре - при дуплексной.
    Во-вторых, в микроЭВМ используются внешние устройства, обмен с которыми необходимо вести в последовательном коде.
    В современных микроЭВМ применяют, как правило, универсальные контроллеры для последовательного ВВ, обеспечивающие как синхронный, так и асинхронный режим обмена данными с ВУ.
    1.12.Способы обмена информацией в микропроцессорной системе
    В ЭВМ применяются три режима ввода/вывода: программно-управляемый ВВ
    (называемый также программным или нефорсированным ВВ), ВВ по прерываниям (форсированный ВВ) и прямой доступ к памяти. Первый из них характеризуется тем, что инициирование и управление ВВ осуществляется программой, выполняемой процессором, а внешние устройства играют сравнительно пассивную роль и сигнализируют только о своем состоянии, в частности, о готовности к операциям ввода/вывода. Во втором режиме ВВ
    инициируется не процессором, а внешним устройством, генерирующим специальный сигнал прерывания. Реагируя на этот сигнал готовности устройства к передаче данных, процессор передает управление подпрограмме обслуживания устройства, вызвавшего прерывание. Действия, выполняемые этой подпрограммой, определяются пользователем, а непосредственными операциями ВВ управляет процессор. Наконец, в режиме прямого доступа к памяти, который используется, когда пропускной способности процессора недостаточно, действия процессора приостанавливаются, он отключается от системной шины и не участвует в передачах данных между основной памятью и быстродействующим ВУ. Заметим, что во всех вышеуказанных случаях

    40
    основные действия, выполняемые на системной магистрали ЭВМ, подчиняются двум основным принципам.
    1. В процессе взаимодействия любых двух устройств ЭВМ одно из них обязательно выполняет активную, управляющую роль и является задатчиком,
    второе оказывается управляемым, исполнителем. Чаще всего задатчиком является процессор.
    2. Другим важным принципом, заложенным в структуру интерфейса, является принцип квитирования (запроса - ответа): каждый управляющий сигнал,
    посланный задатчиком, подтверждается сигналом исполнителя. При отсутствии ответного сигнала исполнителя в течение заданного интервала времени формируется так называемый тайм-аут, задатчик фиксирует ошибку обмена и прекращает данную операцию.
    1.12.1.Программно-управляемый ввод/вывод
    Данный режим характеризуется тем, что все действия по вводу/выводу реализуются командами прикладной программы. Наиболее простыми эти действия оказываются для "всегда готовых" внешних устройств, например индикатора на светодиодах. При необходимости ВВ в соответствующем месте программы используются команды IN или OUT. Такая передача данных называется синхронным или безусловным ВВ.
    Однако для большинства ВУ до выполнения операций ВВ надо убедиться в их готовности к обмену, т.е. ВВ является асинхронным. Общее состояние устройства характеризуется флагом готовности READY, называемым также флагом готовности/занятости (READY/BUSY). Иногда состояния готовности и занятости идентифицируются отдельными флагами READY и BUSY,
    входящими в слово состояния устройства.
    Процессор проверяет флаг готовности с помощью одной или нескольких команд. Если флаг установлен, то инициируются собственно ввод или вывод одного или нескольких слов данных. Когда же флаг сброшен, процессор выполняет цикл из 2-3 команд с повторной проверкой флага READY до тех пор, пока устройство не будет готово к операциям .
    Основной недостаток программного ВВ связан с непроизводительными потерями времени процессора в циклах ожидания. К достоинствам следует отнести простоту его реализации, не требующей дополнительных аппаратных средств.
    1.12.2.Организация прерываний в микроЭВМ
    Одной из разновидностей программно-управляемого обмена данными с ВУ в микроЭВМ является обмен с прерыванием программы, отличающийся от асинхронного программно-управляемого обмена тем, что переход к выполнению команд, физически реализующих обмен данными, осуществляется с помощью специальных аппаратных средств. Команды обмена данными в этом случае выделяют в отдельный программный модуль - подпрограмму обработки

    41
    прерывания. Задачей аппаратных средств обработки прерывания в процессоре микроЭВМ как раз и является приостановка выполнения одной программы (ее еще называют основной программой) и передача управления подпрограмме обработки прерывания. Действия, выполняемые при этом процессором, как правило, те же, что и при обращении к подпрограмме. Только при обращении к подпрограмме они инициируются командой, а при обработке прерывания - управляющим сигналом от ВУ, который называют "Запрос на прерывание" или "Требование прерывания".
    Эта важная особенность обмена с прерыванием программы позволяет организовать обмен данными с ВУ в произвольные моменты времени, не зависящие от программы, выполняемой в микроЭВМ. Таким образом,
    появляется возможность обмена данными с ВУ в реальном масштабе времени,
    определяемом внешней по отношению к микроЭВМ средой. Обмен с прерыванием программы существенным образом экономит время процессора,
    затрачиваемое на обмен. Это происходит за счет того, что исчезает необходимость в организации программных циклов ожидания готовности ВУ
    на выполнение которых тратится значительное время, особенно при обмене с медленными ВУ.
    Прерывание программы по требованию ВУ не должно оказывать на прерванную программу никакого влияния кроме увеличения времени ее выполнения за счет приостановки на время выполнения подпрограммы обработки прерывания. Поскольку для выполнения подпрограммы обработки прерывания используются различные регистры процессора (счетчик команд,
    регистр состояния и т.д.), то информацию, содержащуюся в них в момент прерывания, необходимо сохранить для последующего возврата в прерванную программу.
    Обычно задача сохранения содержимого счетчика команд и регистра состояния процессора возлагается на аппаратные средства обработки прерывания.
    Сохранение содержимого других регистров процессора, используемых в подпрограмме обработки прерывания, производится непосредственно в подпрограмме. Отсюда следует достаточно очевидный факт: чем больший объем информации о прерванной программе сохраняется программным путем,
    тем больше время реакции микроЭВМ на сигнал прерывания, и наоборот.
    Предпочтительными с точки зрения повышения производительности микроЭВМ (сокращения времени выполнения подпрограмм обработки, а,
    следовательно, и основной программы) являются уменьшение числа команд,
    обеспечивающих сохранение информации о прерванной программе, и реализация этих функций аппаратными средствами.
    Формирование сигналов прерываний - запросов ВУ на обслуживание происходит в контроллерах соответствующих ВУ. В простейших случаях в качестве сигнала прерывания может использоваться сигнал "Готовность ВУ",
    поступающий из контроллера ВУ в системный интерфейс микроЭВМ. Однако такое простое решение обладает существенным недостатком - процессор не

    42
    имеет возможности управлять прерываниями, т. е. разрешать или запрещать их для отдельных ВУ. В результате организация обмена данными в режиме прерывания с несколькими ВУ существенно усложняется.
    Рис. 1.12.2.1. Фрагмент блок-схемы контроллера ВУ
    с разрядом "Разрешение прерывания"
    в регистре состояния и управления
    Для решения этой проблемы регистр состояния и управления контроллера ВУ
    дополняют еще одним разрядом - "Разрешение прерывания". Запись 1 или 0 в разряд "Разрешение прерывания" производится программным путем по одной из линий шины данных системного интерфейса. Управляющий сигнал системного интерфейса "Запрос на прерывание" формируется с помощью схемы совпадения только при наличии единиц в разрядах "Готовность ВУ" и "Разрешение прерывания" регистра состояния и управления контроллера.
    Аналогичным путем решается проблемам управления прерываниями в микроЭВМ, в целом. Для этого в регистре состояния процессора выделяется разряд, содержимое которого определяет, разрешены или запрещены прерывания от внешних устройств. Значение этого разряда может устанавливаться программным путем.
    В микроЭВМ обычно используется одноуровневая система прерываний, т. е.
    сигналы "Запрос на прерывание" от всех ВУ поступают на один вход процессора. Поэтому возникает проблема идентификации ВУ, запросившего обслуживание, и реализации заданной очередности (приоритета) обслуживания
    ВУ при одновременном поступлении нескольких сигналов прерывания.

    43
    Существуют два основных способа идентификации ВУ, запросивших обслуживания:
    -программный опрос регистров состояния (разряд "Готовность ВУ")
    контроллеров всех ВУ;
    -использование векторов прерывания.
    Организация прерываний с программным опросом готовности предполагает наличие в памяти микроЭВМ единой подпрограммы обслуживания прерываний от всех внешних устройств. Структура такой подпрограммы приведена на рис.
    1.12.2.2
    Рис. 1.12.2.2.Структура единой программы обработки прерываний и ее связь с основной программой
    Обслуживание ВУ с помощью единой подпрограммы обработки прерываний производится следующим образом. В конце последнего машинного цикла выполнения очередной команды основной программы процессор проверяет наличие требования прерывания от ВУ. Если сигнал прерывания есть и в процессоре прерывание разрешено, то процессор переключается на выполнение подпрограммы обработки прерываний.
    После сохранения содержимого регистров процессора, используемых в подпрограмме, начинается последовательный опрос регистров состояния контроллеров всех ВУ, работающих в режиме прерывания. Как только подпрограмма обнаружит готовое к обмену ВУ, сразу выполняются действия по его обслуживанию. Завершается подпрограмма обработки прерывания после

    44
    опроса готовности всех ВУ и восстановления содержимого регистров процессора.
    Приоритет ВУ в микроЭВМ с программным опросом готовности внешнего устройства однозначно определяется порядком их опроса в подпрограмме обработки прерываний. Чем раньше в подпрограмме опрашивается готовность
    ВУ, тем меньше время реакции на его запрос и выше приоритет.
    Необходимость проверки готовности всех внешних устройств существенно увеличивает время обслуживания тех ВУ, которые опрашиваются последними.
    Это является основным недостатком рассматриваемого способа организации прерываний. Поэтому обслуживание прерываний с опросом готовности ВУ
    используется только в тех случаях, когда отсутствуют жесткие требования на время обработки сигналов прерывания внешних устройств.
    Организация системы прерываний в микроЭВМ с использованием векторов прерываний позволяет устранить указанный недостаток. При такой организации системы прерываний ВУ, запросившее обслуживания, само идентифицирует себя с помощью вектора прерывания - адреса ячейки основной памяти микроЭВМ, в которой хранится либо первая команда подпрограммы обслуживания прерывания данного ВУ, либо адрес начала такой подпрограммы. Таким образом, процессор, получив вектор прерывания, сразу переключается на выполнение требуемой подпрограммы обработки прерывания. В микроЭВМ с векторной системой прерывания каждое ВУ
    должно иметь собственную подпрограмму обработки прерывания.
    Различают векторные системы с интерфейсным и внеинтерфейсным вектором.
    В первом случае вектор прерывания формирует контроллер ВУ, запросившего обслуживания, во втором - контроллер прерываний, общий для всех устройств,
    работающих в режиме прерываний (IBM-совместимые персональные компьютеры).
    Рассмотрим организацию векторной системы с интерфейсным вектором.
    Вектор прерывания выдается контроллером не одновременно с запросом на прерывание, а только по разрешению процессора, как это реализовано в схеме на рис. 1.12.2.3. Это делается для того, чтобы исключить одновременную выдачу векторов прерывания от нескольких ВУ. В ответ на сигнал контроллера
    ВУ "Запрос на прерывание" процессор формирует управляющий сигнал "Предоставление прерывания (вх.)", который разрешает контроллеру ВУ,
    запросившему обслуживание, выдачу вектора прерывания в шину адреса системного интерфейса. Для этого в контроллере используются регистр вектора прерывания и схема совпадения И3. Регистр вектора прерывания обычно реализуется с помощью перемычек или переключателей, что позволяет пользователю устанавливать для конкретных ВУ требуемые значения векторов прерывания.

    45
    Рис. 1.12.2.3. Формирование векторов прерывания в контроллере ВУ
    Управляющий сигнал "Предоставление прерывания (вых.)" формируется в контроллере ВУ с помощью схемы совпадения И2. Этот сигнал используется для организации последовательного аппаратного опроса готовности ВУ и реализации тем самым требуемых приоритетов ВУ. Процессор при поступлении в него по общей линии системного интерфейса "Запрос на прерывание" сигнала прерывания формирует управляющий сигнал "Предоставление прерывания (вх.)", который поступает сначала в контроллер
    ВУ с наивысшим приоритетом. Если это устройство не требовало обслуживания, то его контроллер пропускает сигнал "Предоставление прерывания" на следующий контроллер, иначе дальнейшее распространение сигнала прекращается и контроллер выдает вектор прерывания на адресноинформационную шину.
    Аппаратный опрос готовности ВУ производится гораздо быстрее, нежели программный. Но если обслуживания запросили одновременно два или более
    ВУ, обслуживание менее приоритетных ВУ будет отложено на время обслуживания более приоритетных, как и в системе прерывания с программным опросом.

    46
    Векторная система с внеинтерфейсным вектором прерывания используется в
    IBM-совместимых персональных компьютерах. В этих компьютерах контроллеры внешних устройств не имеют регистров для хранения векторов прерывания, а для идентификации устройств, запросивших обслуживания,
    используется общий для всех ВУ контроллер прерываний .
    Упрощенная схема взаимодействия контроллера прерываний с процессором и контроллером шины имеет следующий вид.
    Рис. 1.12.2.4.Упрощенная схема
    Эта схема функционирует следующим образом. Пусть в некоторый момент времени контроллер клавиатуры с помощью единичного сигнала по линии IRQ
    1 известил контроллер прерываний о своей готовности к обмену. В ответ на запрос контроллер прерываний генерирует сигнал INTR (запрос на прерывание)
    и посылает его на соответствующий вход процессора. Процессор, если маскируемые прерывания разрешены (т.е. установлен флаг прерываний IF в регистре флагов процессора), посылает на контроллер шины сигналы R# - чтение, C# - управление и IO# - ввод/вывод, определяющие тип цикла шины.
    Контроллер шины, в свою очередь, генерирует два сигнала подтверждения прерывания INTA# и направляет их на контроллер прерываний. По второму импульсу контроллер прерываний выставляет на шину данных восьмибитный номер вектора прерывания, соответствующий данной линии IRQ.
    В режиме реального адреса ("реальном" режиме) векторы прерываний хранятся в таблице векторов прерываний, которая находится в первом килобайте оперативной памяти. Под каждый вектор отведено 4 байта (2 байта под адрес сегмента и 2 байта под смещение), т.е. в таблице может содержаться 256
    векторов. Адрес вектора в таблице - номер вектора * 4.
    Далее процессор считывает номер вектора прерывания. Сохраняет в стеке содержимое регистра флагов, сбрасывает флаг прерываний IF и помещает в стек адрес возврата в прерванную программу (регистры CS и IP). После этого процессор извлекает из таблицы векторов прерываний адрес подпрограммы обработки прерываний для данного устройства и приступает к ее выполнению.
    Процедура обработки аппаратного прерывания должна завершаться командой

    47
    конца прерывания EOI (End of Interruption), посылаемой контроллеру прерываний. Для этого необходимо записать байт 20h в порт 20h (для первого контроллера) и в порт A0h (для второго).
    1   2   3   4   5   6   7   8   9   ...   14


    написать администратору сайта