физиология ДЫХАНИЕ. Учебнометодическое пособие физиология дыхания
Скачать 11.5 Mb.
|
Занятие 1Тема 4.1 ВНЕШНЕЕ ДЫХАНИЕ, ТРАНСПОРТ ГАЗОВВопросы для подготовки к занятию:
Дополнительно для студентов педиатрического факультета
Этапы процесса дыхания Дыхание это процесс переноса кислорода из атмосферного воздуха к клеткам и углекислого газа от клеток в окружающую среду. Этот процесс переноса кислорода в те части организма, где он поглощается клетками, происходит в несколько этапов:
Наша задача познакомиться со всеми этапами процесса потому, что нарушения транспортировки кислорода могут возникнуть на любом из этих этапов, а результат будет всегда один - недостаточное получение тканями кислорода - гипоксия. Вентиляция легких Функцию внешнего дыхания у высших позвоночных и человека выполняют специальная система воздухоносных дыхательных путей и легкие. Сюда же следует отнести и дыхательные мышцы, с помощью которых происходит изменение размеров грудной клетки и осуществляется дыхательный акт. Внешнее дыхание осуществляется благодаря, во-первых, изменению объема грудной клетки обусловленному движением ребер и диафрагмы и, во-вторых, последующему пассивному изменению объема легких. Объем грудной клетки увеличивается во время вдоха. Эта фаза носит название инспирации. Экспирацией называется фаза уменьшения объема легких во время выдоха. Чередование вдоха и выдоха составляют дыхательный цикл. Обычно вдох несколько короче выдоха: у человека их соотношение равно в среднем 1:1,3. Соотношение компонентов дыхательного цикла (длительность фаз, глубина дыхания, динамика давления и потоков в воздухоносных путях) характеризует так называемый паттерн дыхания.Во время дыхания окружающий воздух проходит систему полостей и последовательно разветвляющихся трубок. Внутренняя емкость воздухоносных путей до начала респираторных бронхиол I порядка называется анатомически мертвым пространством, составляет от 150 до 170 мл. В этой зоне не происходит газообмена, однако воздухоносные пути выполняют не только функции проводящих трубок. Они обеспечивают очищение, увлажнение и согревание воздуха. Очищение начинается уже при прохождении через носовую полость, где в слизистой оболочке задерживаются частицы пыли, бактерии. Частицы не задержанные в этой области прилипают к слою слизи, который секретируется бокаловидными клетками и субэпителиальными железистыми клетками дыхательных путей. В результате мерцательных движений ресничек дыхательного эпителия слизь постоянно передвигается по направлению к надгортаннику. Согревание и увлажнение воздуха происходит в основном в носовой полости, где большая поверхность слизистой хорошо кровоснабжается и содержит высокоактивные слизистые железы. Воздух, попадающий в альвеолы, нагрет до 37 градусов и полностью насыщен водяными парами. Ацинус - морфофункциональная единица легкого - начинается с дистального конца терминальных бронхиол и включает респираторные бронхиолы всех порядков, альвеолярные ходы и альвеолярные мешочки. В легких взрослого человека содержится 150000 ацинусов, объем ацинуса 30-40 мм2, каждый ацинус содержит до 2000 альвеол, общее число альвеол примерно 300 миллионов, суммарная площадь 80 м2, диаметр альвеол 0.2 - 0.3 мм, каждая альвеола окружена плотной сетью капилляров. Альвеолы отделены друг от друга альвеолярными перегородками, они являются одновременно стенками альвеол. Очень важными и постоянными структурами нормального легкого являются отверстия в альвеолярной перегородке - поры Кона. Благодаря этим порам осуществляется активный коллатеральный газообмен и обмен сурфактантом. Альвеолярный эпителий включает альвеолоциты I и II порядка. Функциональное значение альвеолоцитов I порядка: формирование альвеоло-капиллярного барьера, транспорт жидких компонентов из крови в альвеолы, препятствие проникновению инородных частиц из альвеол в кровь и обратно. Альвеолоциты II порядка занимающие, лишь 3 - 7 % альвеолярной поверхности, выполняют секреторную и репродуктивную функции, этими клетками замещаются клетки первого порядка в случае гибели. Кровь легочных капилляров отделена от альвеол альвеоло-капиллярной мембраной, толщина которой не превышает 1мкм.Для обеспечения нормальной легочной вентиляции необходимо структурное обеспечение, в котором выделим 4 основных фактора:работа дыхательных мышц для изменения размеров грудной клетки,эластичность легочной ткани, которая позволяет ей следовать за изменениями размеров грудной клетки,транспульмональное давление, которое поддерживает легкие в расправленном состоянии,легочный сурфактант, препятствующий спадению альвеол.Дыхательные мышцы Существуют два механизма, вызывающие изменение объема грудной клетки: поднятие и опускание ребер и движения купола диафрагмы. Дыхательные мышцы подразделяются на инспираторные - их сокращение увеличивает объем грудной клетки, и экспираторные – их сокращение уменьшает объем грудной клетки. Акт вдоха (инспирация) совершается вследствие увеличения объема грудной полости в трех направлениях – вертикальном, сагиттальном и фронтальном. Это происходит в результате того, что ребра поднимаются, а диафрагма опускается. Движение ребер. Ребра соединены подвижными сочленениями с телами и поперечными отростками позвонков. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом и поперечным отростком соответствующего позвонка. Поэтому при сокращении инспираторных мышц - наружные косые межреберные мышцы - ребра поднимаются, и объем грудной клетки увеличивается. Когда ребра опускаются при активном участии экспираторных мышц - внутренние косые мышцы, то объем грудной клетки уменьшается – наступает фаза выдоха. Характер изменения объема грудной клетки в зависимости от сокращения наружных и внутренних косых межреберных мышц показан на рисунке 1А. Экспираторными мышцами являются и мышцы брюшной стенки. Рисунок 1А. Влияние сокращения наружных и внутренних косых межреберных мышц на изменение объема грудной клетки Рисунок 1Б. Изменение объема грудной клетки при сокращении диафрагмы Движения диафрагмы Диафрагма является наиболее сильной мышцей вдоха, обеспечивающей примерно 2/3 вентиляции. Диафрагма иннервируется диафрагмальными нервами от сегментов С3 – С5 . Во время вдоха диафрагма уплощается в результате сокращения ее мышечных волокон и отходит от внутренней поверхности грудной клетки, размер грудной клетки увеличивается (рис.1Б). При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. Перемещение диафрагмы всего на 1 см соответствует увеличение емкости грудной полости примерно на 200 - 300 мл. При глубоком форсированном дыхании участвуют дополнительные мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Они включаются в активный процесс дыхания при значительно больших величинах легочной вентиляции, например, при восхождении альпинистов на большие высоты или при дыхательной недостаточности, когда в процесс дыхания вступают почти все мышцы туловища. Верхние отделы грудной клетки на вдохе расширяются преимущественно в переднезаднем направлении, а нижние отделы больше расширяются в боковых направлениях, так как ось вращения нижних ребер занимает сагиттальное положение. В зависимости от того, связано ли расширение грудной клетки при нормальном дыхании преимущественно с поднятием ребер или уплощением диафрагмы, различают грудной и брюшной типы дыхания. Брюшной тип дыхания более эффективен, поскольку при нем интенсивнее вентилируются легкие, и облегчается венозный возврат крови от органов брюшной полости к сердцу. Именно поэтому при обморочных состояниях, когда резко снижается величина венозного возврата к сердцу, что чревато развитием нарушений его функции, пациента кладут на горизонтальную поверхность, нижние конечности приподнимают и просят дышать «животом». При ряде заболеваний, когда требуется усилить деятельность дыхательного аппарата, в акт вдоха могут включаться кроме основных дыхательных мышц, вспомогательные мышцы, к которым относятся все мышцы, прикрепляющиеся к костям плечевого пояса, черепу, позвоночнику и способные поднимать ребра. Важнейшие из них – это большие и малые грудные, лестничные, грудино-ключично-сосцевидные и, частично, зубчатые. Включение этих мышц в акт вдоха достигается специфической позой, когда больной упирается руками в неподвижный предмет, в результате чего плечи фиксируются и отклоняют голову назад. К важнейшим вспомогательным экспираторным мышцам относятся мышцы брюшного пресса, подтягивающие ребра вниз и сдавливающие органы брюшной полости. Иннервация дыхательных мышц осуществляется соматическими нервами, мотонейроны которых расположены в шейном (n. phrenicus) и грудном отделе спинного мозга (n.n. intercjstales). Мотонейроны этих нервов находятся под управлением дыхательного центра продолговатого мозга. Вместе с тем, поскольку эти нервы иннервируют скелетные мышцы, возможно и произвольное управление дыханием (рисунок 2).Рисунок 2. Иннервация дыхательных мышц Соединительная ткань - основа упругости и эластичности легкихЛегкие обладают рядом особенностей структурной организации, обеспечивающих их эластические свойства. Опорный каркас легких, начиная от главных бронхов и заканчивая альвеолами, состоит из соединительной ткани, включающей коллагеновые, ретикулярные и эластические волокна. Пучки этих волокон, подобно пружине, могут растягиваться и сжиматься. Механические свойства коллагеновых и эластических волокон не одинаковы: длина коллагеновых волокон при растяжении увеличивается всего на 2%, но зато очень велика их прочность на разрыв. Эластические волокна, наоборот, обладают очень высокой растяжимостью - до 130 %. В паренхиме легких соотношение коллаген /эластин равно 2.5/1, а в париетальной плевре - 10/1, следовательно, растяжимость легких значительно выше. Вторым компонентом, способным сокращаться и расслабляться являются клетки гладкой мускулатуры, которые расположены по ходу дыхательных путей, в основании у входа в альвеолы, в плевре. Третьим компонентом, вносящим свой вклад в эластичность легких, служат клетки фибробластического ряда, содержащие пучки фибрилл, богатые сократительными белками и способные к сокращению. Соединительнотканный каркас, или строма, легких выполняет несколько функций: опорную, амортизационную, трофическую, коммуникационную. Основной принцип организации опорного каркаса - его непрерывность и структурная взаимосвязанность, от воздухоносных путей до висцеральной плевры. В связи с этим, при изменении внутриплеврального давления силы тяги передаются с париетальной на висцеральную плевру и далее на легкие, в воротах которых соединительнотканные образования плевры зафиксированы. Таким образом, легкие содержат структуры, которые, с одной стороны, эластичны и могут растягиваться, а с другой - обладают ярко выраженной способностью к ретракции (будем называть это свойство ретракцией, для того, чтобы отличать этот пассивный процесс от активного сокращения). Во время вдоха легкие подвергаются растяжению под действием сил сокращения дыхательной мускулатуры (размер грудной клетки увеличивается). Когда эти силы прекращают действовать, легкие благодаря своим упругим свойствам возвращаются в первоначальное состояние. Чем больше увеличивается объем легких во время вдоха, тем сильнее они растягиваются и тем больше накапливается механической энергии для последующей ретракции. Эластические свойства легких характеризуются двумя основными параметрами: 1) растяжимостью и 2) эластическим сопротивлением - это та сила, которая препятствует растяжению. Легочный сурфактант Если полностью удалить из легких воздух и заменить его физиологическим раствором, то окажется, что способность к растяжению у легких значительно повышается. Это объясняется тем, что растяжению легких в норме препятствуют силы поверхностного натяжения, возникающие в легком на границе жидкость - газ. Пленка жидкости, выстилающая внутреннюю поверхность альвеол, содержит высокомолекулярное вещество, понижающее поверхностное натяжение. Это вещество называется сурфактант и синтезируется альвеолоцитами II типа. Сурфактант имеет сложную белково-липидную структуру и представляет собой межфазную пленку на границе воздух - жидкий слой. Физиологическая роль легочного сурфактанта обусловлена тем, что эта пленка значительно снижает поверхностное натяжение, вызванное жидкостью. Поэтому сурфактант обеспечивает во-первых, повышение растяжимости легких и уменьшении работы, совершаемой во время вдоха и, во-вторых, обеспечивает стабильности альвеол препятствуя их слипанию. Регулирующее действие сурфактанта в обеспечении стабильности размеров альвеол состоит в том, что чем меньше становятся размеры альвеол, тем больше снижается поверхностное натяжение под влиянием сурфактанта. Без этого эффекта при уменьшении объема легких самые мелкие альвеолы должны были бы спадаться (ателектаз). Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Потеря сурфактанта приводит к «жестким» (малоподвижным, плохо растяжимым) легким с наличием зон ателектазов. Кроме действия сурфактанта стабильность альвеол в значительной степени обусловлена и структурными особенностями паренхимы легких. Каждая альвеола (кроме прилежащих к висцеральной плевре) окружена другими альвеолами. В такой эластической системе при уменьшении объема какой-то группы альвеол, окружающая их паренхима будет подвергаться растяжению, и препятствовать спадению соседних альвеол. Эту поддержку окружающей паренхимы называют «взаимосвязью». Взаимосвязь наряду с сурфактантом играет большую роль в предотвращении ателектазов и открытии ранее закрытых, по каким то причинам, участков легких. Кроме того, такая «взаимосвязь» поддерживает низкое сопротивление внутрилегочных кровеносных сосудов и стабильность их просвета, просто растягивая их снаружи. Транспульмональное давление Стенки грудной клетки и поверхность легких покрыты тонкой серозной оболочкой. Между листками висцеральной и париетальной плевры имеется узкая (5 - 10 мкм) и герметичная щель, заполненная серозной жидкостью, по составу сходной с лимфой. В момент первого вдоха новорожденного легкие расправляются и остаются в таком состоянии всю оставшуюся жизнь. Если вспомнить о свойствах эластического каркаса легких, то становится ясно, что растянутые легкие постоянно стремятся уменьшить свой размер за счет способности эластических волокон к ретракции. Эта сила эластической тяги легких постоянно «оттягивает» легкие от грудной клетки, поэтому давление в плевральной полости всегда немного ниже, чем давление в альвеолах. Эту разницу давлений можно выявить, если, как видно на рисунке 3, ввести в плевральную полость канюлю, так чтобы ее кончик находился в плевральной полости. Соединив эту канюлю с манометром, мы можем убедиться в том, что у человека в состоянии покоя в конце выдоха внутриплевральное давление примерно на 3-4 мм рт. столба (5см. водного столба) ниже атмосферного. Внутриплевральное давление ниже давления в альвеолах на величину эластической тяги легких: Р плевральное = Р альвеолярное - Р эластической тяги легких Следовательно, между внутренней поверхностью альвеол и плевральной полостью существует разность давлений, причем эта разность всегда в пользу альвеолярного пространства. Разницу между давлением в альвеолах и давлением в плевральной полости называют транспульмональным давлением. Р транспульмональное = Р альвеолярное - Р плевральное. Транспульмональное давление это тот градиент давлений, который поддерживает легкие в расправленном состоянии (давление «изнутри» выше давления «снаружи»). Таким образом, сила транспульмонального давления направлена в одну сторону с влиянием сурфактанта и противодействует эластической тяге легкого и поверхностному натяжению водной пленки. На схеме представлено взаимодействие сил, которые обеспечивают расправленное состояние легких, следовательно возможность легких растягиваться и обеспечивать поступление воздуха в альвеолярное пространство. Плевральное давление часто называют отрицательным лишь потому, что оно ниже атмосферного. Плевральное давление можно считать отрицательным, если атмосферное давление принять за 0. На самом деле это давление положительное и зависит от атмосферного давления. Если атмосферное давление сегодня равно 747 мм рт. ст., то плевральное давление к концу спокойного выдоха будет равно 747 - 3 = 744 мм рт. ст. Таким образом, транспульмональное давление равно 747 – 744 = 3 мм рт. ст. Рассмотрим, каким образом изменяется альвеолярное и плевральное давление во время дыхания. Схема и рисунки 3А и Б иллюстрируют изменения давления во время вдоха и выдоха.
Легко убедиться в том, что транспульмональная разница давлений совершенно необходима для нормального дыхания: стоит только нарушить герметичность плевральной полости. Если атмосферный воздух попадет в плевральную полость, то давление внутри легких и плевральной полости окажутся одинаковыми, легкие при этом спадаются. Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки носит название пневмоторакса. При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы. Если при одностороннем пневмотораксе пациент может существовать за счет воздухообмена через сохранившееся легкое, то при двустороннем пневмотораксе неминуемо наступает смерть. Кроме травматического пневмоторакса существует лечебный пневмоторакс, при котором в плевральную полость вводится строго определенное количество воздуха. Лечебный пневмоторакс применяется с целью ограничения функции больного легкого, например при туберкулезе легкого, абсцессах в легком и т.д. Рисунок 3А. Плевральное давление во время дыхания Рисунок 3Б. Изменение внутрилегочного и внутриплеврального давления во время дыхания Механизмы изменения объема легких при дыхании можно продемонстрировать с помощью модели Дондерса (рис. 4), на которой с помощью двух манометров можно проследить за изменением давления и в легких, и в плевральной полости. Если отсосать воздух из колокола, то легкие расправятся, т.к. в плевральной полости давление станет ниже внутрилегочного, появится разница давлений между внутрилегочным пространством и плевральной полостью – транспульмональное давление. Теперь можно попробовать снизить давление в легких, оттягивая эластическую мембрану вниз и имитируя сокращение диафрагмы и увеличение объема грудной клетки. При этом уменьшится и внутриплевральное давление, что будет видно по изменению уровня жидкости в манометре. Такие изменения внутрилегочного и плеврального давлений характерны для фазы вдоха. Рисунок 4. Модель Дондерса Легочные объемы и емкостиДля функциональной характеристики дыхания принято использовать различные легочные объемы и емкости. Легочные объемы подразделяются на статические и динамические. Первые измеряют при завершенных дыхательных движениях. Вторые измеряют при проведении дыхательных движений и с ограничением времени на их выполнение. Емкость включает в себя несколько объемов. Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических индивидуальных характеристик человека и строения дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами. Дыхательный объем (ДО) — объем воздуха, который вдыхает и выдыхает человек во время спокойного дыхания (рис. 5). У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рассчитывают как среднюю величину после измерения примерно шести спокойных дыхательных движений. Резервный объем вдоха (РО вд) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РО вд составляет 1,5—1,8 л. Резервный объем выдоха (РО выд)—максимальный объем воздуха, который человек дополнительно может выдохнуть после спокойного выдоха. Величина РО выдоха ниже в горизонтальном положении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л. Остаточный объем (ОО) — объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л. Исследование динамических легочных объемов представляет научный и клинический интерес, и их описание выходит за рамки курса нормальной физиологии, Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох. Емкость вдоха (Е вд) равна сумме дыхательного объема и резервного объема вдоха. У человека Е вд составляет в среднем 2,0-2.3 л. Рисунок 5. Легочные объемы и емкости Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или «разведения газов» и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизонтальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растяжимости грудной клетки. Общая емкость легких (ОЕЛ)— объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ = 00 + ЖЕЛ или ОЕЛ = ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции. Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции системы внешнего дыхания у здоровых людей и при диагностике заболевания легких. Минутный объем дыхания Одной из основных характеристик внешнего дыхания является минутный объем дыхания (МОД). Вентиляция легких определяется объемом воздуха вдыхаемого или выдыхаемого в единицу времени. МОД – это произведение дыхательного объема на частоту дыхательных циклов. В норме, в покое ДО равен 500 мл, частота дыхательных циклов – 12 – 16 в минуту, отсюда МОД равен 6 - 7 л/мин. Максимальная вентиляция легких – это объем воздуха, который проходит через легкие за 1 минуту во время максимальных по частоте и глубине дыхательных движений. Альвеолярная вентиляцияИтак, внешнее дыхание, или вентиляция легких обеспечивает поступление в легкие примерно 500 мл воздуха во время каждого вдоха (ДО). Насыщение крови кислородом и удаление углекислого газа происходит при контакте крови легочных капилляров с воздухом, содержащимся в альвеолах. Альвеолярный воздух – это внутренняя газовая среда организма млекопитающих и человека. Ее параметры – содержание кислорода и углекислого газа – постоянны. Количество альвеолярного воздуха примерно соответствует функциональной остаточной емкости легких – количеству воздуха, которое остается в легких после спокойного выдоха, и в норме равно 2500 мл. Именно этот альвеолярный воздух обновляется поступающим по дыхательным путям атмосферным воздухом. Следует иметь в виду, что в легочном газообмене участвует не весь вдыхаемый воздух, а лишь та его часть, которая достигает альвеол. Поэтому для оценки эффективности легочного газообмена важна не столько легочная, сколько альвеолярная вентиляция. Как известно, часть дыхательного объема не участвует в газообмене, заполняя анатомически мертвое пространство дыхательных путей – примерно 140 – 150 мл. Кроме того, есть альвеолы, которые в данный момент вентилируются, но не снабжаются кровью. Эта часть альвеол является альвеолярным мертвым пространством. Сумма анатомического и альвеолярного мертвых пространств называется функциональным, или физиологическим мертвым пространством. Примерно 1/3 дыхательного объема приходится на вентиляцию мертвого пространства, заполненного воздухом, который непосредственно не участвует в газообмене и лишь перемещается в просвете воздухоносных путей при вдохе и выдохе. Следовательно, вентиляция альвеолярных пространств – альвеолярная вентиляция – представляет собой легочную вентиляцию за вычетом вентиляции мертвого пространства. В норме альвеолярная вентиляция составляет 70 - 75 % величины МОД. Расчет альвеолярной вентиляции проводится по формуле: МАВ = (ДО - МП) ЧД, где МАВ - минутная альвеолярная вентиляция, ДО - дыхательный объем, МП - объем мертвого пространства, ЧД - частота дыхания. Попробуем рассчитать альвеолярную вентиляцию, используя данные, приведенные на рисунке 6, и приняв объем мертвого пространства за 150 мл. МАВ = (500 - 150) 15 = 5250 мл/минуту. Рисунок 6. Соотношение МОД и альвеолярной вентиляции Используем эти данные для расчета еще одной величины, характеризующей альвеолярную вентиляцию - коэффициент вентиляции альвеол. Этот коэффициент показывает, какая часть альвеолярного воздуха обновляется при каждом вдохе. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7/1). Таблица 1
Соотношение между вентиляцией и перфузией легких. Для газообмена в легких большое значение имеет соотношение между альвеолярной вентиляцией и кровотоком через малый круг кровообращения. Определенному минутному объему дыхания должен соответствовать определенный минутный объем кровотока, или перфузия капилляров альвеол – вентиляционно-перфузионное отношение, или коэффициент. Вернемся к рисунку 6, рассчитаем этот коэффициент, исходя из того, что минутный объем кровотока в малом круге кровообращения (как и в большом) в норме равен 5000мл. Минутная альвеолярная вентиляция составляет 5200мл. При делении 5200 на 5000 получим вентиляционно-перфузионный коэффициент, который в норме не должен быть меньше 0.8 - 0.9. В отдельных частях легких соотношение между вентиляцией и перфузией неравномерно, что зачастую влияет на локализацию патологического процесса в той или иной доле легкого. Рисунок 7. Распределение кровотока в различных зонах легкого Оказывается, 90% капиллярного кровотока легких приходится на зону 2 (рис. 7), остальные 10% распределяются между 1 и 3 зонами. В верхушках легких давление в легочных артериях ниже альвеолярного. При этом возможно спадение капилляров. В норме это случается редко, однако возможно в случае кровопотери или снижении артериального давления. В средней части давление в артериолах выше альвеолярного, а в нижних отделах даже венозное давление выше альвеолярного. Различное давление в сосудистом русле легких обусловлены силами гравитации и изменяется при изменении положения тела, в воде, в состоянии невесомости. Следует иметь в виду, что дыхательные колебания внутригрудного давления, действуя по принципу «двойного насоса», не только обеспечивают вентиляцию легких, но и стимулируют венозный возврат крови к сердцу. ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ Газовый состав альвеолярного воздуха Газообмен – это процесс выравнивание парциальных давлений газов в двух средах. Этот процесс осуществляется исключительно пассивным путем, движущей силой является градиент парциальных давлений газов. В организме человека и млекопитающих газообмен протекает в легких и тканях. В легких – это процесс обогащения венозной крови кислородом и удаление углекислого газа, а в тканях процесс переноса кислорода из капиллярной крови в ткани и удаление углекислого газа из тканей в кровь. Обогащение кислородом венозной крови происходит путем переноса кислорода из альвеолярного воздуха в кровь. Остановимся подробнее на этом понятии, поскольку альвеолярный воздух – это внутренняя газовая среда нашего организма. Прежде всего, заметим, что правильнее называть альвеолярный воздух альвеолярным газом, потому, что его состав существенно отличается от состава атмосферного воздуха. При спокойном дыхании состав альвеолярного газа мало зависит от фаз вдоха и выдоха, это постоянство состава альвеолярного газа является необходимым условием протекания газообмена. Дело в том, что дыхание – циклический процесс, а кровоток в капиллярах легких – непрерывный. Во время дыхательного цикла наблюдаются короткие периоды остановки дыхания – апноэ (на высоте вдоха и в конце выдоха), при которых вентиляции не происходит, а обмен газами продолжается. Если бы в течение этих периодов ФОЕ не обеспечивала сохранение в альвеолах некоторого количества кислорода, насыщение артериальной крови кислородом снизилось. Воздух, заполняющий мертвое пространство, играет роль буфера, который сглаживает колебания состава альвеолярного газа в ходе дыхательного цикла. Газообмен это пассивный процесс, который протекает по градиенту давлений, попробуем установить величины этих градиентов. У здоровых людей парциальное давление углекислого газа в альвеолах практически совпадает с его напряжением в крови и составляет около 40 мм рт. ст. Парциальное давление кислорода в альвеолах равно в среднем 100 мм рт. ст. Нормальной величиной вентиляции для отдельного человека является та, которая обеспечивает эти значения. Постоянство состава альвеолярного воздуха поддерживается рефлекторной регуляцией МОД. Вспомним, что парциальное давление – часть общего давления, приходящееся на отдельный газ (если бы он занимал весь объем смеси). Парциальное давление газа в смеси можно рассчитать по формуле: Р газа = Р смеси С (%) / 100%, где С – процентное содержание газа. Для воздуха: Р атм = 760 мм рт.ст. С кислорода = 20,9 % Р кислорода = 159 мм рт.ст. При изменении атмосферного давления изменяется и парциальное давление газов. Таблица 2 Газовый состав атмосферного, альвеолярного и выдыхаемого воздуха (содержание в % и парциальное давление в мм рт.ст.)
Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах
Как видим, газовый состав альвеолярного воздуха существенно отличается от атмосферного (21% кислорода и 0.03% углекислого газа). В альвеолярном воздухе содержится 14 % кислорода и 5.5% углекислого газа. Постоянство внутренней газовой среды организма на фоне перехода кислорода в кровь, а углекислого газа в альвеолярный воздух поддерживается с помощью вентиляции легких, которая обеспечивает необходимое обновление альвеолярного воздуха и при выполнении физической работы, и при эмоциональном возбуждении, когда количество используемого кислорода многократно возрастает. Таким образом, с помощью внешнего дыхания решается очень сложная задача: обеспечить и постоянство внутренней газовой среды, и ее необходимое обновление для обеспечения тканей организма кислородом в соответствии с потребностью. |